
Solutions Final exam in GRA 6035 Mathematics
Date January 5th, 2018 at 0900 - 1200

Question 1.

(a) The matrix A, and an echelon form of A, is given by

A =


1 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 1

 →


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 0


We have that rk(A) = 3 since the echelon form has three pivots.

(b) The leading principal minors are D1 = 1, D2 = 1, and D3 = 1 by direct computation, and
D4 = 0 since A has rank 3. This implies that A is positive semidefinite by the RRC (reduced
rank criterion)

(c) To find v1, we solve Ax = 0 using Gaussian elimination, which gives an echelon form of the
augmented matrix of the form

(A|0) =


1 0 0 −1 0
0 1 0 0 0
0 0 1 0 0
−1 0 0 1 0

 →


1 0 0 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0


Hence w is a free variable, y = z = 0, and x = w from the first three equations. This gives
solutions of the form

x =


x
y
z
w

 =


w
0
0
w

 = w


1
0
0
1

 = w · v1

To find v2, we solve (A − 2I)x = 0 using Gaussian elimination, which gives an echelon form
of the augmented matrix of the form

(A− 2I|0) =


−1 0 0 −1 0
0 −1 0 0 0
0 0 −1 0 0
−1 0 0 −1 0

 →


−1 0 0 −1 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0


Hence w is a free variable, y = z = 0, and x = −w from the first three equations. This gives
solutions of the form

x =


x
y
z
w

 =


−w
0
0
w

 = w


−1
0
0
1

 = w · v2

Hence, we may choose the vectors as

v1 =


1
0
0
1

, v2 =


−1
0
0
1


Note that these vectors are not unique; any non-zero scalar multiple of each vector would have
the required properties.
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Question 2.

(a) The differential equation y′′+2y′−15y = 18e4t is second order linear and we can solve it using
the superposition principle, with y = yh+yp. Since the characteristic equation r2+2r−15 = 0
has solutions r = 3 and r = −5, the homogeneous solution is yh = C1e

3t + C2e
−5t. For the

particular solution, we guess that there is a solution of the form y = Ae4t. This gives y′ = 4Ae4t

and y′′ = 16Ae4t, and therefore

16Ae4t + 2 · 4Ae4t − 15 ·Ae4t = 18e4t

This gives 16A+ 8A− 15A = 18, or 9A = 18. It has solution A = 2, and therefore yp = 2e4t,
and the general solution is

y = yh + yp = C1e
3t + C2e

−5t + 2e4t

(b) The differential equation ety′ = 2ey−t is separable since it can be re-written as

y′ = e−t · 2ey−t = ey · 2e−2t ⇒ e−yy′ = 2e−2t

Integration on both sides with respect to t gives∫
e−y dy =

∫
2e−2t dt ⇒ −e−y = −e−2t + C

We solve this exaction for y, and obtain e−y = e−2t − C, and hence

−y = ln(e−2t − C) ⇒ y = − ln(e−2t − C)

(c) The differential equation y′ = (y2−3) · ln(y) is autonomous, with F (y) = (y2−3) · ln(y), which
is defined for y > 0. The equilibrium states are therefore given by

F (y) = (y2 − 3) · ln(y) = 0 ⇒ y =
√

3 or y = 1

since ln(y) = 0 gives y = 1, and since F is not defined at y = −
√

3. Hence ye = 1 and
ye =

√
3 are the equilibrium states. To determine their stability, we compute F ′(ye). Since

F ′(y) = 2y ln(y) + (y2 − 3) · 1/y, we get

F ′(1) = −2 < 0, F ′(
√

3) = 2
√

3 ln(
√

3) > 0

Therefore, ye = 1 is stable and ye =
√

3 is unstable by the Stability Theorem. We can also see
this from the phase diagram below, where the arrows show the time development of y = y(t)
as time passes. None of the equilibrium states are globally asymptotically stable, since an
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F (y) = (y2 − 3) ln(y)

initial value y0 >
√

3 will give a solution curve that moves away from both equilibrium states
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as time passes. In fact, since y′ = F (y) = (y2 − 3) ln(y) > 0 for y >
√

3, the solution curve
will be increasing.

Question 3.

(a) The stationary points of u are given by

u′x = 2x+ 2y − 4z = 0, u′y = 2x+ 4y = 0, −4x+ 16z = 0

This gives x = 4z from the last equation, y = −x/2 = −2z from the second equation, and
therefore 2(4z) + 2(−2z) − 4z = 0 from the first equation, which gives 0 = 0. Thies implies
that z is free, and (x, y, z) = (4z,−2z, z) are therefore the stationary points of u. The Hessian
of u is given by

H(u) =

 2 2 −4
2 4 0
−4 0 16


and D1 = 2, D2 = 4 and D3 = 16(4)− 4(16) = 0 (by cofactor expansion along the last row).
It follows that rkH(u) = 2, and from the RRC (reduced rank condition) we see that H(u) is
positive semidefinite. This means that u is a convex function. Therefore, u(0, 0, 0) = 2 is the
minimum value of u, since (0, 0, 0) is one of the statinary points of u (with z = 0) that we
know is a global minimum point.

(b) The outer function f(u) = u/ ln(u) has derivative

f ′(u) =
1 · ln(u)− u · (1/u)

ln(u)2
=

ln(u)− 1

ln(u)2

Therefore, the partial derivatives of f are given by

f ′x =
ln(u)− 1

ln(u)2
· u′x =

ln(u)− 1

ln(u)2
· (2x+ 2y − 4z)

f ′y =
ln(u)− 1

ln(u)2
· u′y =

ln(u)− 1

ln(u)2
· (2x+ 4y)

f ′z =
ln(u)− 1

ln(u)2
· u′z =

ln(u)− 1

ln(u)2
· (−4x+ 16z)

with u = 2 + x2 + 2y2 + 8z2 + 2xy − 4xz.
(c) From (a) we know that the values of the inner function are u ≥ 2, and from (b) we know that

f ′(u) = (lnu − 1)/ ln(u)2 is the derivative of the outer function. This means that f ′(u) = 0
for ln(u) = 1, or u = e, that f(u) is decreasing for u in [2, e], and that f(u) is increasing for u
in [e,∞). When u→∞, we have that f(u) = u/ ln(u)→∞. This means that the minimum
value of f is

fmin = f(e) = e/1 = e

and that f has no maximum value.

1 2 3 4 5 6 7 8 9

1

2

3

4

u
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Question 4.

(a) The Lagrangian is L = xy(x + y) − λ(x2 + y2 + (x + y)2) = x2y + xy2 − λ(2x2 + 2xy + 2y2)
since the Kuhn-Tucker problem is in standard form. The first order conditions (FOC) are

L′x = 2xy + y2 − λ(4x+ 2y) = 0

L′y = x2 + 2xy − λ(2x+ 4y) = 0

the constraint (C) is given by 2x2 + 2xy + 2y2 ≤ 6, and the complentary slackness conditions
(CSC) are given by

λ ≥ 0 and λ(2x2 + 2xy + 2y2 − 6) = 0

The Kuhn-Tucker conditions are FOC+C+CSC.
(b) We look at the cases when (i) 2x2 + 2xy+ 2y2 < 6 and (ii) 2x2 + 2xy+ 2y2 = 6 separately. In

each case, we find all points (x, y;λ) with x, y 6= 0 that satisfies FOC+C+CSC. We start with
case (i): With λ = 0, we get 2xy + y2 = x2 + 2xy = 0, or y(2x + y) = x(x + 2y) = 0. With
x, y 6= 0, this gives 2x+ y = x+ 2y = 0, and this implies that x = y = 0. Hence there are no
candidates with x, y 6= 0 in this case. We consider case (ii), and write the FOCs as

2xy + y2 − λ(4x+ 2y) = y(2x+ y)− 2λ(2x+ y) = (y − 2λ)(2x+ y) = 0

x2 + 2xy − λ(2x+ 4y) = x(x+ 2y)− 2λ(x+ 2y) = (x− 2λ)(x+ 2y) = 0

There are four sub-cases to consider. If x = y = 2λ, then the constrain gives 2x2+2xy+2y2 =
24λ2 = 6. This gives λ2 = 1/4 and λ = 1/2 (since λ ≥ 0). We get the candidate point
(x, y;λ) = (1, 1; 1/2) with f = 2.
If y = 2λ and x+2y = 0, then x = −4λ. The constrain gives 2x2+2xy+2y2 = 24λ2 = 6. This
gives λ2 = 1/4 and λ = 1/2 (since λ ≥ 0). We get the candidate point (x, y;λ) = (−2, 1; 1/2)
with f = 2.
If x = 2λ and 2x+y = 0, then y = −4λ. The constrain gives 2x2+2xy+2y2 = 24λ2 = 6. This
gives λ2 = 1/4 and λ = 1/2 (since λ ≥ 0). We get the candidate point (x, y;λ) = (1,−2; 1/2)
with f = 2.
Finally, if 2x+ y = x+ 2y = 0, we get x = y = 0. There are therefore three candidate points
(x, y;λ) with x, y 6= 0 that satisfy FOC+ C+CSC, given by

(x, y;λ) = (1, 1; 1/2), (−2, 1; 1/2), (1,−2; 1/2)

shown in the figure below.
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2x2 + 2xy + 2y2 ≤ 6

(c) The set of points (x, y) such that 2x2 + 2xy+ 2y2 ≤ 6 is bounded. In fact, x2, y2, (x+ y)2 ≥ 0
and therefore x2, y2, (x+ y)2 ≤ 6, which means that −

√
6 ≤ x, y ≤

√
6. We can also see that

the set if bounded by noticing that it consist of an ellipse and the inside of an ellipse. By the
EVT, the Kuhn-Tucker problem therefore has a maximum. The possible maximum points are
the candidate points with x, y 6= 0 found in (b), candidate points with x = 0 or y = 0 that
satisfy FOC+C+CSC, and admissible points where NDCQ fails. The candidate points found
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in (b) have f = 2. Therefore, possible candidate points with x = 0 or y = 0, where f = 0,
cannot be maximum points. The NDCQ in the case 2x2 + 2xy + 2y2 = 6 is given by

rk
(
4x+ 2y 2x+ 4y

)
= 1

and it fails if 4x+ 2y = 2x+ 4y = 0, which gives x = y = 0. Since this point does not satisfy
2x2+2xy+2y2 = 6, NDCQ holds for all points on the ellipse. Since there is no NDCQ condition
in case 2x2 +2xy+2y2 < 6, there are no admissible points where NDCQ fails inside the ellipse
either. We conclude that f = 2 is the maximum value, and that (x, y) = (1, 1), (1,−2), (−2, 1)
are the maximum points. The SOC gives no conclusion in this case.

(d) We formulate a Kuhn-Tucker problem with a parameter a, given by

max f(x, y) = xy(x+ y) subject to x2 + y2 + (x+ y)2 − a ≤ 0

Its Lagrangian is L = xy(x+y)−λ(x2+y2+(x+y)2−a) and L′a = λ. The Envelope Theorem
for this situation is that

df∗(a)

da
= L′a(x∗(a), y∗(a), z∗(a);λ∗(a)) = λ∗(a)

For a = 6, we have maximum value f∗(6) = 2 and λ∗(2) = 1/2 from the computations in (b)
and (c). This means that an estimate for the new maximum value is

f∗(5.7) ≈ f∗(6) + ∆a · λ∗(6) = 2 + (−0.3) · 0.5 = 1.85

For completeness, one may note that there is a maximum value f∗(a) for all values of a close
to 6 since 2x2 + 2xy + 2y2 ≤ a is bounded for any a ≥ 0.
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