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Solutions Final exam in GRA 6035 Mathematics
Date January 5th, 2018 at 0900 - 1200

QUESTION 1.

The matrix A, and an echelon form of A, is given by

-1

OO = O
O~ OO
_— o O

SO O
OO = O
o~ OO
o O O

We have that rk(A) = 3 since the echelon form has three pivots.

The leading principal minors are D; = 1, Dy = 1, and D3 = 1 by direct computation, and
D, = 0 since A has rank 3. This implies that A is positive semidefinite by the RRC (reduced
rank criterion)

To find v1, we solve Ax = 0 using Gaussian elimination, which gives an echelon form of the

augmented matrix of the form
-1 -1

(4]0) =

O O =
OO~ O
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— o O
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— o O
O O O
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Hence w is a free variable, y = z = 0, and = w from the first three equations. This gives
solutions of the form

=W Vi

S ve 8
g ocoo=&
_ o O =

To find vg, we solve (A — 2I)x = 0 using Gaussian elimination, which gives an echelon form
of the augmented matrix of the form

-1 0 0 -1]0 -1 0 0 -1|0
0O -1 0 010 0O -1 0 010
(A —2I0) = 0 0 1 010 - 0O 0 -1 010
-1 0 0 -1]0 0O 0 0 010
Hence w is a free variable, y = z = 0, and = —w from the first three equations. This gives
solutions of the form
T —w —1
S 2N I RO I I
x=1_1=| o |=¥]| o |7w
w w 1
Hence, we may choose the vectors as
1 -1
vy = 0 v 0
1= 0 I 2 = 0
1 1

Note that these vectors are not unique; any non-zero scalar multiple of each vector would have

the required properties.
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QUESTION 2.

The differential equation y” 4 2y — 15y = 18e* is second order linear and we can solve it using
the superposition principle, with y = yp, +v,,. Since the characteristic equation r24+2r—15=10
has solutions 7 = 3 and r = —5, the homogeneous solution is y; = C1e3’ + Coe™. For the
particular solution, we guess that there is a solution of the form y = Ae*'. This gives 3/ = 4Ae*
and 3" = 16Ae*, and therefore

16Ae* + 2 44e* — 15 - Ae*t = 18e*

This gives 16A + 8A — 15A = 18, or 9A = 18. It has solution A = 2, and therefore y, = 2et,
and the general solution is

Y =un+yp=Cre’ + Coe™ 4 2¢"
The differential equation e’y = 2e¥~* is separable since it can be re-written as
Y =e b2V =Y. 2072 = 7Yy =27

Integration on both sides with respect to t gives
/e_y dy = /26_% dt = —eV=—¢24(C

We solve this exaction for y, and obtain e ¥ = e~ — C, and hence
—y=In(e*-C) = y=-Inle?-0)

The differential equation 3’ = (y? —3)-In(y) is autonomous, with F(y) = (y*—3)-In(y), which
is defined for y > 0. The equilibrium states are therefore given by

Fly)=(*=3) ) =0 = y=V3 or y=1
since In(y) = 0 gives y = 1, and since F is not defined at y = —+/3. Hence 3. = 1 and
ye = \/3 are the equilibrium states. To determine their stability, we compute F’(y,). Since
F'(y) = 2yln(y) + (y* = 3) - 1/y, we get
F'(1)=-2<0, F'(V3)=2V3In(V3)>0
Therefore, y, = 1 is stable and y, = v/3 is unstable by the Stability Theorem. We can also see

this from the phase diagram below, where the arrows show the time development of y = y(t)
as time passes. None of the equilibrium states are globally asymptotically stable, since an

/

Y

60

initial value o > v/3 will give a solution curve that moves away from both equilibrium states
2



as time passes. In fact, since ¢ = F(y) = (y% — 3)In(y) > 0 for y > /3, the solution curve
will be increasing.

QUESTION 3.

The stationary points of u are given by
w, =2z +2y—42=0, wu,=2r+4y=0, —4r+16z2=0

This gives = 4z from the last equation, y = —z/2 = —2z from the second equation, and
therefore 2(4z) 4+ 2(—2z) — 4z = 0 from the first equation, which gives 0 = 0. Thies implies
that z is free, and (z,vy, z) = (4z, —2z, z) are therefore the stationary points of u. The Hessian
of u is given by

2 2 —4
Hu =2 4 0
—4 0 16

and Dy =2, Dy =4 and D3 = 16(4) — 4(16) = 0 (by cofactor expansion along the last row).
It follows that rk H(u) = 2, and from the RRC (reduced rank condition) we see that H(u) is
positive semidefinite. This means that u is a convex function. Therefore, u(0,0,0) = 2 is the
minimum value of u, since (0,0,0) is one of the statinary points of u (with z = 0) that we
know is a global minimum point.

The outer function f(u) = u/In(u) has derivative

;o Leln(u) —w-(1/u)  In(u) -1
flu) = In(u)? ~ In(u)?

Therefore, the partial derivatives of f are given by

, In(w)—1 , In(u)—1

= e = g 12
, In(uw)—1 , In(u)—1

fo= S o= g O 4

, In(w)—1 , In(u)—1

= e = e (A 4169

with v = 2 + 22 + 2y% + 822 + 2y — 4z 2.
From (a) we know that the values of the inner function are v > 2, and from (b) we know that
f'(u) = (Inu — 1)/In(u)? is the derivative of the outer function. This means that f’(u) = 0
for In(u) = 1, or u = e, that f(u) is decreasing for u in [2, ¢], and that f(u) is increasing for u
in [e,00). When u — oo, we have that f(u) = u/In(u) — co. This means that the minimum
value of f is

fmin:f(e)ze/lze

and that f has no maximum value.

F(u) = u/In(w)
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QUESTION 4.

The Lagrangian is £ = zy(x + y) — Ma? + y* + (z + y)?) = 2%y + zy? — M\(22? + 22y + 2y?)
since the Kuhn-Tucker problem is in standard form. The first order conditions (FOC) are

L =2zy+y* — N4z +2y) =0
E;::L‘2+2:L‘yf)\(2x+4y):0

the constraint (C) is given by 222 + 2xy + 2y < 6, and the complentary slackness conditions
(CSC) are given by

A>0 and A(2z% + 22y + 2y —6) =0

The Kuhn-Tucker conditions are FOC+C+CSC.

We look at the cases when (i) 222 + 2zy + 2y? < 6 and (ii) 222 + 2zy + 2y? = 6 separately. In
each case, we find all points (x,y; \) with x,y # 0 that satisfies FOC+C+CSC. We start with
case (i): With A = 0, we get 2xy + y? = 22 + 20y = 0, or y(2z + y) = z(x + 2y) = 0. With
x,y # 0, this gives 2x + y = & + 2y = 0, and this implies that = y = 0. Hence there are no
candidates with 2,y # 0 in this case. We consider case (ii), and write the FOCs as

20y +y? — MNdz +2y) = y(2r +y) —2A2x +y) = (y — 2\)(2x +y) =0
2 4+ 2xy — N2z +4y) = z(x +2y) — 2\ (@ +2y) = (x — 2\)(z +2y) =0

There are four sub-cases to consider. If = y = 2, then the constrain gives 222+ 2zy + 2> =
24)\? = 6. This gives A2 = 1/4 and A = 1/2 (since A > 0). We get the candidate point
(z,y; A) = (1,1;1/2) with f = 2.

If y = 2X and £+ 2y = 0, then & = —4\. The constrain gives 222+ 2zy+ 2y? = 24\ = 6. This
gives A2 = 1/4 and A = 1/2 (since A > 0). We get the candidate point (x,y;\) = (—2,1;1/2)
with f = 2.

If £ = 2X\ and 2z +y = 0, then y = —4\. The constrain gives 222+ 2zy + 2y? = 24\ = 6. This
gives A2 = 1/4 and A = 1/2 (since A > 0). We get the candidate point (x,y;\) = (1,—2;1/2)
with f = 2.

Finally, if 22 +y = x + 2y = 0, we get * = y = 0. There are therefore three candidate points
(z,y; \) with z,y # 0 that satisfy FOC+ C+CSC, given by

(z,y;0) = (1, 1;1/2), (=2,1;1/2), (1,-2;1/2)

shown in the figure below.

(0
1 222 + 22y +2° <6
1 .
| % % |
-2\ -1 1 T
-1 4
-2 1

The set of points (z,y) such that 222 + 2zy + 2y? < 6 is bounded. In fact, 22,2, (z +y)? > 0
and therefore 22,42, (z + y)? < 6, which means that —v/6 < 2,y < v/6. We can also see that
the set if bounded by noticing that it consist of an ellipse and the inside of an ellipse. By the
EVT, the Kuhn-Tucker problem therefore has a maximum. The possible maximum points are
the candidate points with x,y # 0 found in (b), candidate points with x = 0 or y = 0 that

satisfy FOC+C+CSC, and admissible points where NDCQ fails. The candidate points found
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in (b) have f = 2. Therefore, possible candidate points with x = 0 or y = 0, where f = 0,
cannot be maximum points. The NDCQ in the case 222 4 2zy + 2y% = 6 is given by

rk(4x+2y 2$+4y) =1

and it fails if 4z 4+ 2y = 2z 4+ 4y = 0, which gives x = y = 0. Since this point does not satisfy
222 +22y+2y? = 6, NDCQ holds for all points on the ellipse. Since there is no NDCQ condition
in case 222 +2zy + 2y? < 6, there are no admissible points where NDCQ fails inside the ellipse
either. We conclude that f = 2 is the maximum value, and that (z,y) = (1,1), (1, —-2),(-2,1)
are the maximum points. The SOC gives no conclusion in this case.
We formulate a Kuhn-Tucker problem with a parameter a, given by

max f(z,y) = zy(x + y) subject to 2> +3° + (z +y)> —a <0

Its Lagrangian is £ = zy(z+vy) — AN(z?+y*+ (z+y)?> —a) and £}, = X\. The Envelope Theorem
for this situation is that

df;a) = Ly(x"(a),y"(a), 2" (a); A" (a)) = A" (a)

For a = 6, we have maximum value f*(6) = 2 and \*(2) = 1/2 from the computations in (b)
and (c). This means that an estimate for the new maximum value is
FH5.7) ~ F5(6) + Aa - \*(6) =2+ (—0.3) - 0.5 = 1.85

For completeness, one may note that there is a maximum value f*(a) for all values of a close
to 6 since 2x2 + 2xy + 2y? < a is bounded for any a > 0.
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