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QUESTION 1.

(a) We use Gaussian elimination to find the rank of A:

1 0 -1 0 10 -1 0 10 -1 O
A 0 2 0 8 _ 02 0 8 - 02 0 8

-1 0 1 O 00 0 O 00 0 =34

0 8 0 =2 08 0 =2 00 O 0

Since there are three pivot positions, we have that rk(A) = 3. This means that A - x = 0 has
n —rk(A) =4 — 3 =1 free variables. Since there is no pivot position in the third column, we
may choose z as the free variable.

(b) By definition, Null(A) is the set of solutions of the homogeneous linear system A -x = 0. By
the computation in (a), an echelon form of the augmented matrix (A|0) is given by

10 -1 0 |0

02 0 8 |0
00 0 —-3410
0 0 O 0 |0
Backwards substitution gives —34w = 0, or w = 0 from the third equation, 2y + 8w = 0, or
y = —4w = 0 from the second equation, and x — z = 0, or x = z from the first equation. The
solutions of A - x = 0 in vector form are therefore given by
x z 1 1
X = y — 0 =z 0 = Z-V, Wlth vV = O
z z 1 1
w 0 0 0

This means that Null(A) = span(v), and dim Null(A) = 1 since there is one free variable z.

(¢) The leading principal minors of A are D; = 1, Dy = 2, and D3 = 2(1 — 1) = 0 by cofactor
expansion along the second row. Since rk(A) = 3, we have that Dy = 0. We cannot use the
reduced rank condition (RRC) to determine the definiteness of A since rk(A) = 3 and D3 = 0,
and we compute the principal minors of A instead. The first order principal minors of A are
given by

Ay =1,2,1,-2
Since there are both positive and negative principal minors of order one, it follows that A is
indefinite.

QUESTION 2.

(a) The differential equation 3” — 12y’ 420y = 3e~! is second order linear and we can solve it using
superposition. To find the homogeneous solution gy, we consider the homogeneous differential
equation y"” — 12y’ + 20y = 0, which has characteristic equation 72 — 127 + 20 = 0, with two
distinct solutions » = 2 and r = 10. Therefore, we have

yp = Cl 62t + 02 e10t
To find the particular solution y,, we consider the differential equation y” — 12y’ + 20y = 3e™*
and use the method of undetermined coefficients. We start with f(¢) = 3e™*, and compute
f' = —3et and f” = 3e!. Based on this, we guess the solution y = Ae~!, which gives
y' = —Aet and 3y’ = Ae~t. When we substitute this into the differential equation, we get
(Ae™") —12(—Ae™") +20(Ae™) = 3!
or 33Ae~! = 3e~!. Comparing coefficients, we get 334 = 3, or A = 1/11, and
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The general solution of the differential equation is therefore

1
yzyh+yp:ClthJngelOt—kﬁe‘t

The system of differential equations can be written in the form y’ = A -y, where

=1 5) v=()

We find the eigenvalues and eigenvectors of A: The eigenvalues are given by the characteristic
equation det(A — A\I) = 0, which can be written as A? — tr(A)\ + det(A) = A2 — 25 = 0, and
the eigenvalues are \; = 5 and Ay = —5. The eigenspaces are given by F5 = span(vi) and

E_5 = span(vs), where
(2 (1

—2 4 8 4
A_A1]:<4 —8>’ A_Aﬂ:(zx 2)

Since A is diagonalizable, with enough eigenvalues and eigenvectors, we have that the general
solution is

2 1\ _ 2C) e + Cye ot

The differential equation 3’ = 0.15y(1 — y/200) is autonomous, with F(y) = 0.15y(1 — y/200).
The equilibrium states are therefore given by

F(y) =0.15y(1 —y/200) =0 = y=0 or y=200

Hence y. = 0 and y. = 200 are the equilibrium states. To determine their stability, we compute
F'(ye). Since F'(y) = (0.15y — 0.15/200y2)" = 0.15 — 0.15y/100, we get

F'(0)=0.15>0, F'(200)=—0.15<0

since we have that

Therefore, y. = 0 is unstable and y. = 200 is stable by the Stability Theorem. We can also
see this from the phase diagram below, where the arrows show the development of y = y(t) as
time passes. None of the equilibrium states are globally asymptotically stable, since an initial
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value yg < 0 will give a solution curve that moves away from both equilibrium states as time
passes.

QUESTION 3.
The first order partial derivatives of f(z,y,2) = 16 — 2* — 222 — 3y? + 622z — 622 + 10z and
the FOC’s are given by

fo=—42" -4z +62=0, fj=-6y=0, fl=62—122+4+10=0
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The second FOC gives y = 0, and the third FOC gives z = (62 + 10)/12 = (3z + 5)/6.
Substituting this in the first FOC, we get

—42® —dx 4+ (3r+5) =42 —x +5=0

We see that = = 1 is a solution of this equation, and z = 1 gives z = 8/6 = 4/3. Hence there
is a unique stationary point with z = 1, and this stationary point is (z,y,z) = (1,0,4/3).

The Hessian matrix is given by
—1222 -4 0 6
H(f)= 0 -6 0
6 0 -12

For all x,y, z, we have that Dy = —122? — 4 < 0, that Dy = —6D; > 0 and that
D3 = —6(—12(—122% — 4) — 36) = —6(1442> +12) < 0

Hence H(f)(z,y,z) is negative definite for all z,y,z, and f is concave. This implies that
the stationary point (x,y,z) = (1,0,4/3) is a global maximum point for f, and its global
maximum value is fmax = f(1,0,4/3) = 71/3.

Let f(x,y,2;a) = 16 — 2* — 222 — 3y? + 622 — 622 + az be a function with parameter a such
that f(z,y,2;10) = f(x,y,2). From (a) and (b), we know that f*(10) = 71/3 with maximum
point (z*(10),y*(10), 2*(10)) = (1,0,4/3). The envelope theorem states that

df*(a)  0f(z,y,25a) , . .
- 94 (z*(a),y"(a),z"(a))

when the maximum value of f(z,y,2;a) exists.The right hand side is given by z*(a) since
Of(x,y,z;a)/0a = z. For values of a close to a = 10, we can therefore estimate f*(a) by

f*(a)%f*(lO)+Aa~d'}:g“):731-1—(a—10)-§

Since f*(11) = max (16 — 2* — 222 — 3y? + 622 — 622 + 112), we have the following estimate

of the maximum value: - L
M) 2 —4+1-—=—=25

QUESTION 4.

The Lagrangian of the Kuhn-Tucker problem is £ = 322 — 32 — 222 — X\(22* + 2y* + 2%) since
the problem is in standard form. The first order conditions (FOC) are

L =6z —\8z%) =0

I 3\

L, =-2y—A8y”) =0

L= —42-)\42*)=0
the constraint (C) is given by 22* + 2y* + 2z* < 18, and the complementary slackness conditions
(CSC) are given by

A>0 and A2z*+2y'+ 21 —18)=0
The Kuhn-Tucker conditions are FOC+C+CSC.
The FOC’s give 22(3 — 4A2?) = 0, —2y(1 + 4\y?) = 0 and —22(2 + 2\22) = 0. Since A > 0,
we have that
1+4\y?> >0and 2+ 2122 >0

and this implies that y = z = 0 from the two last FOC’s. The first FOC gives x = 0 or
Az? = 3/4. If z = 0, then the constraint holds and is non-binding, and this implies that

(z,y,2;A) = (0,0,0;0)

is one candidate point with f = 0. Otherwise, Az?> = 3/4, and this implies that A > 0, and
the constraint must be binding. This gives

2 +04+40=18 = z*=9
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Hence 22 = 3, and = = +/3. Since \z? = 3/4, this means that A = 1/4, and we obtain two
more candidate points
(z,y,2;A) = (£v3,0,0;1/4)
with f=9.
(c) The set of points (z,y) such that 2% +2y* + 2% < 18 is bounded since 2, y* < 9 and 2* < 18,
which means that

—\/§§x,y§\/§ and —(‘/ﬁgzgﬁ

It then follows from the EVT (extreme value theorem) that the Kuhn-Tucker problem has a
maximum. The maximum point must be a candidate point found in (b), or an admissible
point where NDCQ fails. We check the NDCQ condition: If the constraint is binding, then
224 4+ 2y* + 2% = 18, and the NDCQ condition is
rkJ =1k (823 8y® 42%) =1

The only point where this fails is (z,y,2z) = (0,0,0), and the constraint is not binding at
this point. Hence NDCQ holds in the binding case. In the non-binding case, there is no
condition to check. It follows that the only candidate points for maximum are the points from
(b) satisfying FOC+C+CSC, and therefore the best of these candidate points are maximum
points. The maximum value of f is fumax = 9 at (£v/3,0,0).

QUESTION 5.

The logistic differential equation y’ = 0.15y(1 — y/200) is separable, and can be written as
1 , 200 ,
— =015 = —— .y =015
y(1 —y/200) y(200 — y)

Since the first factor can be written as 1/y + 1/(200 — y) using partial fractions, it follows that

1 1
/+ dy:/0.15dt = Inly|—In|200 —y| =0.15t + C
y 200 —y

Using the exponential function on both sides, we obtain

| 0.15t+C Y C ,0.15¢ 0.15¢
200 —y] € 200—y O ° c
This gives y = Ae%15(200 — 5), or y(1 + Ae®1%) = 200A4e% 1%, and therefore the general solution
A 0.15¢
1 + Ae015t

If yo = 50, we get 50 = 200A4/(1+ A). This means that A/(1+ A) = 1/4, or 4A = 1+ A. This implies
that 34 = 1, or A = 1/3. The time T it takes to reach 90% of the carrying capacity K = 200, is
given by the equation

Ae0-15T Ae0-15T
090200 = 200 T——57er = 0.9 =" g7z
with A = 1/3. This gives
0.9(1 4 Ae® Ty = AOPT = P4 -094) =09 = T = 70054

With A = 1/3, this gives €%1°7 = 9/A4 = 27, and therefore
3In3

0.157 =In(27) =In(3*) =3In3 = T = 0Tr

=20In3
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