EXAMINATION QUESTION PAPER - Written examination

GRA 60353 Mathematics

Department of Economics			
Start date:	07.01.2019	Time 13.00	
Finish date:	07.01.2019	Time 16.00	
Weight:	80% of GRA 6	80% of GRA 6035	
Total no. of pages:	2 incl. front page		
Answer sheets:	Squares	Squares	
Examination support materials permitted:	11	BI-approved exam calculator. Simple calculator. Bilingual dictionary.	
Re-sit	Ordinary		50

Exam Final exam in GRA 6035 Mathematics Date January 7th, 2019 at 1300 - 1600

This exam consists of 12+1 problems (one additional problem is for extra credits, and can be skipped). Each problem has a maximal score of 6p, and 72p (12 solved problems) is marked as 100% score.

You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

Question 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & -3 \end{pmatrix}$$

- (a) (6p) Determine the definiteness of A.
- (b) (6p) Find all eigenvectors for A with eigenvalue $\lambda = -5$, and compute dim E_{-5} .
- (c) (6p) Find the eigenvalues of A, and determine all values of r such that dim Null $(A rI) \ge 1$.

Question 2.

- (a) (6p) Find the general solution of the differential equation 4y'' 4y' 3y = 9t.
- (b) (6p) Find the general solution of the differential equation 4ty' + 4y = 1.
- (c) (6p) Find the general solution of the following system of differential equations:

$$y'_1 = y_1 + 2y_2$$

 $y'_2 = 5y_2$

Question 3.

We consider the function $f(x, y, z) = 3x^2 + y^2 + axy - y + 2z^4 + 8z + 12$, where a is a parameter.

- (a) (6p) Find all stationary points of f when a = 3.
- (b) (6p) Determine all values of a such that f is a convex function.
- (c) (6p) Find $f^*(3)$, and use the envelope theorem to estimate $f^*(a)$ for values of a close to 3.

Question 4.

We consider the Lagrange problem

min
$$f(x, y, z, w) = 2x^2 + 2xy + 2y^2 + 3z^2 + 8zw - 3w^2$$
 subject to $x^2 + y^2 + z^2 + w^2 = 1$

- (a) (6p) Write down the Lagrange conditions for this problem.
- (b) (6p) Find all points $(x, y, z, w; \lambda)$ with $\lambda = -5$ that satisfy the Lagrange conditions.
- (c) (6p) Solve the Lagrange problem, and find the minimum value f_{\min}^* .

Question 5.

We consider the Kuhn-Tucker problem

 $\max \ f(x,y,z,w) = 2x^2 + 2xy + 2y^2 + 3z^2 + 8zw - 3w^2 \text{ subject to } x^2 + y^2 + z^2 + w^2 \leq 1 x^2 + 2y^2 + 2y^2 + 3z^2 + 8zw - 3w^2 + 2y^2 + 2y^$

Extra credit (6p) Show that a point $(x, y, z, w; \lambda)$ satisfy the first order conditions of this problem if and only if $\mathbf{x} = (x, y, z, w)$ is an eigenvector of the matrix A (from Question 1) with eigenvalue λ or $\mathbf{x} = (0, 0, 0, 0)$. Use this to solve the Kuhn-Tucker problem and find its maximum value.