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Question 1.

(a) We use Gaussian elimination to find the rank of A. We use a Gaussian process until we find
an echelon form:

A =


1 2 −1 3
2 −1 3 0
1 7 −6 9
5 0 5 3

 →


1 2 −1 3
0 −5 5 −6
0 5 −5 6
0 −10 10 −12

 →


1 2 −1 3
0 −5 5 −6
0 0 0 0
0 0 0 0


Since there are two pivot positions, we have that rk(A) = 2.

(b) Let us call the variables x, y, z, w. From the echelon form that we found in (a), we see that
z and w are free, and back substitution gives that −5y + 5z − 6w = 0, or −5y = −5z + 6w,
which gives y = z − 6w/5, and that x + 2y − z + 3w = 0, or x = −2y + z − 3w, which gives
x = −2(z − 6w/5) + z − 3w = −z − 3w/5. Therefore, the solutions are given by

x
y
z
w

 =


−z − 3w/5
z − 6w/5

z
w

 = z ·


−1
1
1
0

+
w

5
·


−3
−6
0
5

 = z ·w1 +
w

5
·w2

It follows that {w1,w2} is a base of Null(A), with

w1 =


−1
1
1
0

, w2 =


−3
−6
0
5


(c) Since there are pivot positions in the first two columns of A, the first two column vectors of

A is a base B = {v1,v2} of Col(A). Since w2 is in Null(A), we have that

A ·w2 = −3v1 − 6v2 + 5v4 = 0 ⇒ 5v4 = 3v1 + 6v2

Question 2.

(a) We compute det(A) by cofactor expansion along the first column:

|A| =

∣∣∣∣∣∣
−7 6 2
−6 5 2
−6 6 1

∣∣∣∣∣∣ = −7(5− 12) + 6(6− 12)− 6(12− 10) = 49− 36− 12 = 1

(b) We check if vi is an eigenvector of A by computing Avi:

Av1 =

−7 6 2
−6 5 2
−6 6 1

 ·
1

1
1

 =

1
1
1

 = 1 · v1

Av2 =

−7 6 2
−6 5 2
−6 6 1

 ·
1

1
0

 =

−1
−1
0

 = −1 · v2

Av3 =

−7 6 2
−6 5 2
−6 6 1

 ·
1

0
3

 =

−1
0
−3

 = −1 · v3

This means that v1,v2,v3 are eigenvectors of A, with eigenvalues λ1 = 1, λ2 = λ3 = −1.
(c) It follows from the previous question that λ1 = 1 is an eigenvalue of multiplicity one, and that

λ = −1 is an eigenvalue of multiplicity 2. We have that E1 has base {v1}, and since v2 and
v3 are clearly linearly independent, E−1 has base {v2,v3}. Since there are enough eigenvalues
and eigenvectors, A is diagonalizable.
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Question 3.

(a) We solve the second order linear differential equation y′′ − 11y′ + 18y = 9t2 − 11t + 10 using
superposition. To find the homogeneous solution yh, we consider the homogeneous differential
equation y′′ − 11y′ + 18y = 0, which has characteristic equation r2 − 11r + 18 = 0, with roots
r = 2 and r = 9, and we have yh = C1 e

2t+C2 e
9t. To find a particular solution yp, we consider

the differential equation y′′− 11y′+ 18y = 9t2− 11t+ 10 and use the method of undetermined
coefficients. We start with f(t) = 9t2−11t+10, and compute f ′(t) = 18t−11 and f ′′(t) = 18.
Based on this, we guess the solution y = At2 +Bt+C, which gives y′ = 2At+B and y′′ = 2A.
When we substitute this into the differential equation, we get

(2A)− 11(2At+B) + 18(At2 +Bt+ C) = 9t2 − 11t+ 10

Collecting terms on the left-hand side, we get

18At2 + (18B − 22A)t+ (18C − 11B + 2A) = 9t2 − 11t+ 10

Comparing coefficients, we get 18A = 9, or A = 1/2, 18B − 11 = −11, or B = 0, and
18C + 1 = 10, or C = 1/2. This means that yp = t2/2 + 1/2, and the general solution of the
differential equation is therefore

y = yh + yp = C1 e
2t + C2 e

9t +
1

2
t2 +

1

2

(b) The differential equation et y′ = t y2 is separable, since it can be written in the form

y′ = e−tty2 = (te−t) · y2 ⇒ 1

y2
y′ = te−t ⇒

∫
1

y2
dy =

∫
te−t dt

The integral on the left-hand side can be solved by writing 1/y2 = y−2, and we obtain∫
1

y2
dy =

∫
y−2 dy = −y−1 + C1 = −1

y
+ C1

The integral on the right-hand side can be solved using integration by parts, with u′ = e−t

and v = t, which gives u = −e−t and v′ = 1, and therefore∫
te−t dt = uv −

∫
uv′ dt = −te−t −

∫
(−e−t) · 1 dt = −te−t − e−t + C2

The general solution can therefore be written as

−1

y
+ C1 = −te−t − e−t + C2 ⇒ 1

y
= te−t + e−t + C =

t+ 1 + Cet

et

in implicit form, with C = C1 − C2, and the general solution in explicit form is given by

y =
et

t+ 1 + Cet

(c) The system of differential equations has the form y′ = Ay and we find the eigenvalues and
eigenvectors of the matrix A: The characteristic equation is∣∣∣∣∣∣

−λ 0 2
4 −2− λ 4
2 0 −λ

∣∣∣∣∣∣ = (−2− λ) · (λ2 − 4) = 0

by cofactor expansion along the middle column. This means that λ1 = λ2 = −2, λ3 = 2. We
need to compute a base for E−2 and E2. We find the vectors v in the eigenspace E−2 by the
Gaussian process2 0 2

4 0 4
2 0 2

 →
2 0 2

0 0 0
0 0 0

 ⇒ v = y ·

0
1
0

+ z ·

−1
0
1


and the vectors v in the eigenspace E2 by the Gaussian process−2 0 2

4 −4 4
2 0 −2

 →
−2 0 2

0 −4 8
0 0 0

 ⇒ v = z ·

1
2
1


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Since dimE−2 = 2 and dimE2 = 1, A is diagonalizable, and P−1AP = D for the matrices D
and P given

D =

−2 0 0
0 −2 0
0 0 2

 , P =

0 −1 1
1 0 2
0 1 1


If we define new variables u1, u2, u3 by u = P−1y, which can also be written y = Pu, then it
follows that

u′ = (P−1y)′ = P−1y′ = P−1Ay = P−1AP · P−1y = D · u

Hence u′i = λiui, which gives ui = Ci · eλit for 1 ≤ i ≤ 3, and

y = Pu =

0 −1 1
1 0 2
0 1 1

 ·
C1 e

−2t

C2 e
−2t

C3 e
2t

 = C1

0
1
0

 e−2t + C2

−1
0
1

 e−2t + C3

1
2
1

 e2t

Question 4.

(a) Since f is a quadratic form, we may either use the symmetric matrix A of f , or the Hessian
matrix H(f) = 2A of f . We choose to use the symmetric matrix A, which is given by

A =


−4 0 2 2
0 −10 −2 2
2 −2 −5 3
2 2 3 −5


We compute its first leading principal minors D1 = −4 < 0, D2 = 40 > 0, and

D3 = −4(50− 4) + 2(0 + 20) = −144 < 0

Moreover, we have that D4 = |A| = 0 since H(f) = 2A and detH(f) = 24 · |A| = 0. It follows
that rkA = 3, and A is negative semidefinite by the reduced rank criterion (RRC). Therefore
H(f) = 2A is also negative semidefinite, and f is a concave function.

(b) The Lagrangian is L = f(x, y, z, w) − λ(x2 + y2 + z2 + w2), and the first order conditions
(FOC) are given by

L′x = −8x+ 4z + 4w − λ · 2x = 0

L′y = −20y − 4z + 4w − λ · 2y = 0

L′z = 4x− 4y − 10z + 6w − λ · 2z = 0

L′w = 4x+ 4y + 6z − 10w − λ · 2w = 0

and the constraint (C) is given by x2 + y2 + z2 +w2 = 6. We see that when λ = −12, the first
order conditions is a linear system, with coefficient matrix

16 0 4 4
0 4 −4 4
4 −4 14 6
4 4 6 14


We solve the linear system using Gaussian elimination, and start by dividing the first row with
4. We obtain the following echelon form:

4 0 1 1
0 4 −4 4
4 −4 14 6
4 4 6 14

 →


4 0 1 1
0 4 −4 4
0 −4 13 5
0 4 5 13

 →


4 0 1 1
0 4 −4 4
0 0 9 9
0 0 9 9

 →


4 0 1 1
0 4 −4 4
0 0 9 9
0 0 0 0


We see that w is free, and use back substitution to solve the linear system. We have that
9z+ 9w = 0, or z = −w, that 4y−4z+ 4w = 0, or y = z−w = −2w, and that 4x+ z+w = 0,
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or 4x = −z−w = 0, which gives x = 0. This implies that (x, y, z, w;λ) = (0,−2w,−w,w;−12)
with w free. We put this into the constraint, and get

x2 + y2 + z2 + w2 = 02 + (−2w)2 + (−w)2 + w2 = 3 ⇒ 6w2 = 6

This means that w2 = 1, or w = ±1. We find the following solutions of the Lagrange conditions
with λ = −12:

(x, y, z, w;λ) = (0,−2,−1, 1;−12), (0, 2, 1,−1;−12)

(c) We consider the function h(x, y, z, w) = L(x, y, z, w;−12) and try to use the SOC to determine
whether the candidate points we found in (b) are minimum points. The function h is given by

h(x, y, z, w) = 8x2 + 2y2 + 7z2 + 7w2 + 4xz + 4xw − 4yz + 4yw + 6zw

The Hessian matrix of h is given by

H(h) =


16 0 4 4
0 4 −4 4
4 −4 14 6
4 4 6 14


We have D1 = 16, D2 = 64 and D3 = 16(56−16)+4(0−16) = 576. Moreover, D4 = |H(h)| = 0
since H(h) is the matrix from (b), with one free variable. Hence, it follows from the reduced
rank condition (RRC) that H(h) is positive semidefinite, and therefore h is convex. By the
SOC, this means that the candidate points (x, y, z, w;λ) = (0,−2,−1, 1;−12), (0, 2, 1,−1;−12)
are minimum points. The minimum value is f(0, 2, 1,−1) = −72.

(d) Any candidate point (x, y, z, w;λ) that satisfies FOC+C with λ = 0 must be a maximum point.
In fact, h(x, y, z, w) = L(x, y, z, w; 0) = f(x, y, z, w) is concave, and therefore this follows from
the SOC. We try to find such candidate points, and use the FOC from (b) with λ = 0 instead
of λ = −12. The linear system we get has coefficient matrix

−8 0 4 4
0 −20 −4 4
4 −4 −10 6
4 4 6 −10


This matrix is 2A, where A is the symmetric matrix of f , so we know that there will be at
least one free variable since |A| = 0. We use Gaussian elimination, and find an echelon form:

−8 0 4 4
0 −20 −4 4
4 −4 −10 6
4 4 6 −10

 →

−8 0 4 4
0 −20 −4 4
0 −4 −8 8
0 4 8 −8

 →

−8 0 4 4
0 −4 −8 8
0 0 36 −36
0 0 0 0


We switched the two middle rows to make the last operations easier. From this echelon form,
we see that w is free, that z = w, that −4y = 8z− 8w = 0, and that −8x = −4z− 4w = −8w,
or x = w. It follows that (x, y, z, w) = (w, 0, w, w), and the constraint gives

x2 + y2 + z2 + w2 = 6 ⇒ w2 + 02 + w2 + w2 = 3w2 = 6

This gives w2 = 2, or w = ±
√

2. It follows that there are two candidate points

(x, y, z, w;λ) = (
√

2, 0,
√

2,
√

2; 0), (−
√

2, 0,−
√

2,−
√

2; 0)

that satisfy FOC+C. By the comments above, these points are maximum points, with maxi-
mum value f(

√
2, 0,
√

2,
√

2) = 0.
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