Solutions Final exam in GRA 6035 Mathematics
Date January 28th, 2022 at 1300 - 1600

Question 1.

(a)

(b)

(c)

We compute the determinant of A using cofactor expansion along the second column:

T INEN

Al = =2./-1 -2 -5
-1 0 -2 -5 Lo 3
1 0 0 3

We compute the 3-minor by cofactor expansion along the middle column, and this gives
|A|=2-(-2)-(9—1)=—-4-8=-32
Since A is a 4 x 4 matrix with |A| # 0, we have that rk(A) = 4. This means that
dim Col(A4) =1k(A) =4, dimNull(4) =4 —1k(A)=0

We solve the linear system (A —2I)x = 0, to simultaneously check that A = 2 is an eigenvalue
and to find a base of Es:

1 0 0 1 10 0 1 10 01
0 0 4 4 00 4 4 0 0 4 4
A=2=1_109 4 5| 7 |oo -4 4] 7 |ooo0o
1 0 0 1 00 0 O 0000
We see that there are two free variables xo and x4, hence A = 2 is an eigenvalue and dim Fy = 2.
We solve the linear system using back substitution, and find z3 = —x4 and z; = —x4. The
solutions are therefore given by
1 —T4 0 -1
o xI9 . i) o 1 0
x= T3 o —XT4 T2 0 T -1
T4 X4 0 1
It follows that the vectors vi = (0,1,0,0), vo = (—1,0,—1,1) form a base of Es.
The eigenvalues of A are the solutions of the characteristic equation |[A — XI| = 0, and we
compute the determinant on the left-hand side by cofactor expansion along the second column:
LU R I
|A— M| = =2-XN-| -1 —-2-X =5
-1 0 -2—-X =5 1 0 31\
1 0 0 3—A

We compute the resulting 3-minor using cofactor expansion along the second column, and
write the characteristic equation in the form
3—A 0 1
2-XA)-| -1 —-2-X =5 :(2—)\)(—2—)\)-‘
1 0 3—A
This gives A = 2, A = —2, or A2 — 6\ 4+ 8 = 0, which gives A = 2 or A = 4. We conclude that
the eigenvalues of A are \y = Ay =2, A3 =4, \y = —2.

3—-A 1
1 3—A

Question 2.

(a)

We use superposition to solve the linear difference equation 6y;2 + yr+1 —yr = 6t + 1: To find
the homogeneous solution y}', we consider the characteristic equation 6r2 +r — 1 = 0, with
two distinct roots r = 1/3, r = —1/2, and therefore

n_ o (1Y 1y
yt—01<3 +02 5

To find a particular solution y/, we consider the difference equation 6y; 12 + y¢+1 — v = 6t + 1.
We try to find a constant solution y; = At + B, which gives y,41 = A(t+1)+ B = At+ A+ B,
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and yi12 = A(t+2)+ B = At +2A+ B. When we substitute this into the difference equation,
we get
6(At+2A+ B)+ (At+A+B)— (At+B)=6t+1
(6A)t + (1344 6B) =6t + 1

Comparing coefficients, we find 64 =6, or A=1, and 1344+6B=1,or 6B=1—-13 = —12,
which gives B = —2. The general solution is therefore given by

1\ 1\
ye=yi +uf = Ci <3> +C2<—2> -2

The differential equation ty’ — 2y = t? can be written v’ — (2/t)y = t, and is linear. Since
[ —(2/t)dt = —21n|t| + C, the integrating factor is u = =2l = |¢|=2 = 1/¢2. Multiplication
with the integrating factor gives the differential equation

1 | 1
<t2.y> =2 = t2-y:/1/tdtzln|t|+C

Therefore, the differential equation has general solution y = ¢ - In [t| + Ct2.
We write y? — 3t2y + (2ty — t3)y’ = 0 in the form p(¢,y) + q(¢,v)y’ = 0 to check if it is exact:
We look for a function h(t,y) in two variables such that

hy = plt,y) = y* — 3%y

hy = q(t,y) =2ty —t°
We see that h(t,y) = y?t — t3y satisfies both conditions, therefore the differential equation is
exact, and its general solution can be written in the form h(t,y) = y?*t — 3y = C. The implicit

form of the solution can be written ty?> — t3y — C' = 0, and we use the quadratic formula to
solve it for y:

y:

3+ /16 — 4t(—C 2 16 +4Ct 1
e = G

We let A be the 3 x 3 matrix such that the system of difference equations can be written in
the form y,; 11 = Ay;. The eigenvalues of A is given the characteristic equation
2—A 1 1
det(A—XI)=| -1 2—-2X 0 |=0
3 -1 1-2A
We use cofactor expansion along the second row to compute the determinant, and get
F1-1=A4+D+2=2)(2=N1 =N =3)=2-N)1+I\-31+2-3)

This gives the characteristic equation (2 — A\)(A?> — 3\) = —A(A — 2)(A — 3) = 0, and there are
three distinct eigenvalues Ay = 0, Ay = 2, and A3 = 3. This means that A is diagonalizable.
We find a base {v;} for E), in each case: We use the Gaussian processes

2 1 1 1 20 0o 1 1 -1 0 0

Ep:[{-1 2 ol =0 51 Er:|l-1 0 o] =(0 11
3 -1 1 0 00 3 -1 -1 0 00
-1 1 1 11 1

Es:|l-1 -1 0] =0 21
3 -1 -2 0 0 0

and back substitution, and find base vectors vi = (=2,—1,5), vo = (0,—1,1), v3 = (1,—1,2)
for the three eigenspaces. The general solution is therefore given by

—2 0 1
yi = Clvl/\ﬁ + CQVQ)\% + Cng)\é =Ci|-1]- 0¢ +Cy | -1 - ot +C3|—-1]- 3t
) 1 2

where 0° = 1 if t = 0 and 0' = 0 if £ > 0 is a positive integer.
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Question 3.

(a)

We write f on matrix form f(x) = x? Ax + Bx, where

-1 -1 0
A=|-1 0 -2|, B=(6 6 6)
0 -2 —4
To find the stationary points, we solve the first order conditions f'(x) = 24x + BT = 0, or
Ax = —1/2- BT. This gives a linear system, and we solve it using Gaussian elimination:
-1 -1 0|-3 -1 -1 0]-3 -1 -1 0]-3
-1 0 -2|-3]—-( 0 1 -2 O0)]—=1| O 1 —=2| 0
0 -2 —4|-3 0 -2 —4|-3 0 0 —-8|-3

Back substitution gives —9z = —3 or z = 3/8, y = 2(3/8) = 3/4, and that —z = 3/4—-3 = —9/4
or z = 9/4. Hence x* = (9/4,3/4,3/8) is the unique stationary point f. To classify it, notice
that A is indefinite since Dy = —1. This means that H(f)(x*) = 2A is also indefinite, and
x* = (9/4,3/4,3/8) is a saddle point for f by the second derivative test.

The Kuhn-Tucker problem is in standard form with Lagrangian £ = x” Ax+ Bx—\(x? Dx—9),
where D is the symmetric matrix of the quadratic form g, given by

2 0 4

D=0 10
4 0 3

The first order conditions (FOC) can therefore be written £'(x) = 24x + BT — A\(2Dx) = 0,
the constraint (C) can be written x” Dx < 9, and the complementary slackness conditions can
be written A > 0 and A\(x” Dx — 9) = 0. Together, the conditions FOC + C + CSC are the
Kuhn-Tucker conditions of the problem:

FOC+C+CSC: 2A4x + BT —\2Dx) =0, x’Dx <9, A >0, A\(x'Dx —9) =0

When ) = 1, the first order conditions are 24x + BT —2Dx =0, or (A — D)x = —1/2- BT.
This is a linear system, and we solve it using Gaussian elimination (where the first step is to
subtract the last row from the first to simplify computations):
0
3>
-3

-3 -1 -4 | -3 1 1 3 0 1 1 3 0 11 3
-1 -1 -2|3}]—=-({-1 -1 -2|-3] =100 1|-3]—=1(0 2 5
-4 -2 -7|-3 -4 -2 7|3 0 2 5|3 0 0 1

Back substitution gives z = —3, 2y = —5(—3)—3 = 12 or y = 6, and that x = —(6)—3(—3) = 3.
We get the solution (x,y, z; \) = (3,6, —3; 1) of the FOC. We see that the constraint is binding
since

9(3,6,-3) = 2(3)? + 62 +3(—3)? +8(3)(-3) =9

at this point, and that the CSC is satisfied since A > 0. We conclude that there is one candidate
point (x,y,z;\) = (3,6,—3;1) with A = 1 that satisfies the Kuhn-Tucker conditions.

We use the second order condition (SOC) to test the candidate point (z,y, z; A) = (3,6, —3; 1),
and therefore consider the function

h(x) = L(x;1) = 24Ax + B" —2Dx =2(A — D)x + BT

We notice that h is a quadratic function with Hessian H(h) = 2(A — D), and that H(h) has
the same definiteness as

-3 -1 —4
A-D=1[-1 -1 -2
-4 -2 -7
We compute the principal minors of A — D: We have D; = -3, Do = 3 —1 = 2, and

that D3 = —3(7 —4) + 1(7 — 8) — 4(2 — 4) = —2. We conclude that A — D, and therefore
H(h) = 2(A — D), is negative definite, and it follows that h is a concave function. By the
SOC, it follows that (x,y,z) = (3,6, —3) is a maximizer in the Kuhn-Tucker problem, and
that fiax = f(3,6,—3) = 27 is the maximum value.
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(e) We have that g(z,y, z) can be written as a sum of the quadratic forms 222 + 322 4+ 8zz and y2.
We see that the second one is positive definite, while the first is indefinite. This means that
D is not bounded, and therefore not compact. For example, we can let y = 0 and z = —=z.
Then the constraint

glz,y,2) = 222 + 3(—x)* + 8x(—2) = 52® — 822 = —322 <9

is satisfied for all values of x, and this means that there in no upper or lower bound on x for
admissible points (z,y, z) in D.



