
Solutions Final exam in GRA 6035 Mathematics
Date January 28th, 2022 at 1300 - 1600

Question 1.

(a) We compute the determinant of A using cofactor expansion along the second column:

|A| =

∣∣∣∣∣∣∣∣
3 0 0 1
0 2 4 4
−1 0 −2 −5
1 0 0 3

∣∣∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣∣
3 0 1
−1 −2 −5
1 0 3

∣∣∣∣∣∣
We compute the 3-minor by cofactor expansion along the middle column, and this gives

|A| = 2 · (−2) · (9− 1) = −4 · 8 = −32

(b) Since A is a 4× 4 matrix with |A| ≠ 0, we have that rk(A) = 4. This means that

dimCol(A) = rk(A) = 4, dimNull(A) = 4− rk(A) = 0

(c) We solve the linear system (A− 2I)x = 0, to simultaneously check that λ = 2 is an eigenvalue
and to find a base of E2:

A− 2I =


1 0 0 1
0 0 4 4
−1 0 −4 −5
1 0 0 1

 →


1 0 0 1
0 0 4 4
0 0 −4 −4
0 0 0 0

 →


1 0 0 1
0 0 4 4
0 0 0 0
0 0 0 0


We see that there are two free variables x2 and x4, hence λ = 2 is an eigenvalue and dimE2 = 2.
We solve the linear system using back substitution, and find x3 = −x4 and x1 = −x4. The
solutions are therefore given by

x =


x1
x2
x3
x4

 =


−x4
x2
−x4
x4

 = x2


0
1
0
0

+ x4


−1
0
−1
1


It follows that the vectors v1 = (0, 1, 0, 0), v2 = (−1, 0,−1, 1) form a base of E2.

(d) The eigenvalues of A are the solutions of the characteristic equation |A − λI| = 0, and we
compute the determinant on the left-hand side by cofactor expansion along the second column:

|A− λI| =

∣∣∣∣∣∣∣∣
3− λ 0 0 1
0 2− λ 4 4
−1 0 −2− λ −5
1 0 0 3− λ

∣∣∣∣∣∣∣∣ = (2− λ) ·

∣∣∣∣∣∣
3− λ 0 1
−1 −2− λ −5
1 0 3− λ

∣∣∣∣∣∣
We compute the resulting 3-minor using cofactor expansion along the second column, and
write the characteristic equation in the form

(2− λ) ·

∣∣∣∣∣∣
3− λ 0 1
−1 −2− λ −5
1 0 3− λ

∣∣∣∣∣∣ = (2− λ)(−2− λ) ·
∣∣∣∣3− λ 1

1 3− λ

∣∣∣∣ = 0

This gives λ = 2, λ = −2, or λ2 − 6λ+ 8 = 0, which gives λ = 2 or λ = 4. We conclude that
the eigenvalues of A are λ1 = λ2 = 2, λ3 = 4, λ4 = −2.

Question 2.

(a) We use superposition to solve the linear difference equation 6yt+2+ yt+1− yt = 6t+1: To find
the homogeneous solution yht , we consider the characteristic equation 6r2 + r − 1 = 0, with
two distinct roots r = 1/3, r = −1/2, and therefore

yht = C1

(
1

3

)t

+ C2

(
−1

2

)t

To find a particular solution ypt , we consider the difference equation 6yt+2+ yt+1− yt = 6t+1.
We try to find a constant solution yt = At+B, which gives yt+1 = A(t+1)+B = At+A+B,
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and yt+2 = A(t+2)+B = At+2A+B. When we substitute this into the difference equation,
we get

6(At+ 2A+B) + (At+A+B)− (At+B) = 6t+ 1

(6A)t+ (13A+ 6B) = 6t+ 1

Comparing coefficients, we find 6A = 6, or A = 1, and 13A+ 6B = 1, or 6B = 1− 13 = −12,
which gives B = −2. The general solution is therefore given by

yt = yht + ypt = C1

(
1

3

)t

+ C2

(
−1

2

)t

+ t− 2

(b) The differential equation ty′ − 2y = t2 can be written y′ − (2/t)y = t, and is linear. Since∫
−(2/t)dt = −2 ln |t|+C, the integrating factor is u = e−2 ln |t| = |t|−2 = 1/t2. Multiplication

with the integrating factor gives the differential equation(
1

t2
· y
)′

=
1

t
⇒ 1

t2
· y =

∫
1/tdt = ln |t|+ C

Therefore, the differential equation has general solution y = t2 · ln |t|+ Ct2.
(c) We write y2 − 3t2y + (2ty − t3)y′ = 0 in the form p(t, y) + q(t, y)y′ = 0 to check if it is exact:

We look for a function h(t, y) in two variables such that

h′t = p(t, y) = y2 − 3t2y

h′y = q(t, y) = 2ty − t3

We see that h(t, y) = y2t− t3y satisfies both conditions, therefore the differential equation is
exact, and its general solution can be written in the form h(t, y) = y2t− t3y = C. The implicit
form of the solution can be written ty2 − t3y − C = 0, and we use the quadratic formula to
solve it for y:

y =
t3 ±

√
t6 − 4t(−C)

2t
=

t2

2
±

√
t6 + 4Ct

2t
=

1

2

(
t2 ±

√
t4 + 4C/t

)
(d) We let A be the 3 × 3 matrix such that the system of difference equations can be written in

the form yt+1 = Ayt. The eigenvalues of A is given the characteristic equation

det(A− λI) =

∣∣∣∣∣∣
2− λ 1 1
−1 2− λ 0
3 −1 1− λ

∣∣∣∣∣∣ = 0

We use cofactor expansion along the second row to compute the determinant, and get

+1 · (1− λ+ 1) + (2− λ)((2− λ)(1− λ)− 3) = (2− λ)(1 + λ2 − 3λ+ 2− 3)

This gives the characteristic equation (2− λ)(λ2 − 3λ) = −λ(λ− 2)(λ− 3) = 0, and there are
three distinct eigenvalues λ1 = 0, λ2 = 2, and λ3 = 3. This means that A is diagonalizable.
We find a base {vi} for Eλi

in each case: We use the Gaussian processes

E0 :

 2 1 1
−1 2 0
3 −1 1

 →

−1 2 0
0 5 1
0 0 0

 E2 :

 0 1 1
−1 0 0
3 −1 −1

 →

−1 0 0
0 1 1
0 0 0


E3 :

−1 1 1
−1 −1 0
3 −1 −2

 →

−1 1 1
0 2 1
0 0 0


and back substitution, and find base vectors v1 = (−2,−1, 5), v2 = (0,−1, 1), v3 = (1,−1, 2)
for the three eigenspaces. The general solution is therefore given by

yt = C1v1λ
t
1 + C2v2λ

t
2 + C3v3λ

t
3 = C1

−2
−1
5

 · 0t + C2

 0
−1
1

 · 2t + C3

 1
−1
2

 · 3t

where 0t = 1 if t = 0 and 0t = 0 if t > 0 is a positive integer.
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Question 3.

(a) We write f on matrix form f(x) = xTAx+Bx, where

A =

−1 −1 0
−1 0 −2
0 −2 −4

 , B =
(
6 6 6

)
To find the stationary points, we solve the first order conditions f ′(x) = 2Ax + BT = 0, or
Ax = −1/2 ·BT . This gives a linear system, and we solve it using Gaussian elimination:−1 −1 0 −3

−1 0 −2 −3
0 −2 −4 −3

→

−1 −1 0 −3
0 1 −2 0
0 −2 −4 −3

→

−1 −1 0 −3
0 1 −2 0
0 0 −8 −3


Back substitution gives−9z = −3 or z = 3/8, y = 2(3/8) = 3/4, and that−x = 3/4−3 = −9/4
or x = 9/4. Hence x∗ = (9/4, 3/4, 3/8) is the unique stationary point f . To classify it, notice
that A is indefinite since D2 = −1. This means that H(f)(x∗) = 2A is also indefinite, and
x∗ = (9/4, 3/4, 3/8) is a saddle point for f by the second derivative test.

(b) The Kuhn-Tucker problem is in standard form with Lagrangian L = xTAx+Bx−λ(xTDx−9),
where D is the symmetric matrix of the quadratic form g, given by

D =

2 0 4
0 1 0
4 0 3


The first order conditions (FOC) can therefore be written L′(x) = 2Ax+ BT − λ(2Dx) = 0,
the constraint (C) can be written xTDx ≤ 9, and the complementary slackness conditions can
be written λ ≥ 0 and λ(xTDx − 9) = 0. Together, the conditions FOC + C + CSC are the
Kuhn-Tucker conditions of the problem:

FOC+C+CSC: 2Ax+BT − λ(2Dx) = 0, xTDx ≤ 9, λ ≥ 0, λ(xTDx− 9) = 0

(c) When λ = 1, the first order conditions are 2Ax+ BT − 2Dx = 0, or (A−D)x = −1/2 · BT .
This is a linear system, and we solve it using Gaussian elimination (where the first step is to
subtract the last row from the first to simplify computations):(−3 −1 −4 −3

−1 −1 −2 −3
−4 −2 −7 −3

)
→

(
1 1 3 0

−1 −1 −2 −3
−4 −2 −7 −3

)
→

(
1 1 3 0
0 0 1 −3
0 2 5 −3

)
→

(
1 1 3 0
0 2 5 −3
0 0 1 −3

)
Back substitution gives z = −3, 2y = −5(−3)−3 = 12 or y = 6, and that x = −(6)−3(−3) = 3.
We get the solution (x, y, z;λ) = (3, 6,−3; 1) of the FOC. We see that the constraint is binding
since

g(3, 6,−3) = 2(3)2 + 62 + 3(−3)2 + 8(3)(−3) = 9

at this point, and that the CSC is satisfied since λ > 0. We conclude that there is one candidate
point (x, y, z;λ) = (3, 6,−3; 1) with λ = 1 that satisfies the Kuhn-Tucker conditions.

(d) We use the second order condition (SOC) to test the candidate point (x, y, z;λ) = (3, 6,−3; 1),
and therefore consider the function

h(x) = L(x; 1) = 2Ax+BT − 2Dx = 2(A−D)x+BT

We notice that h is a quadratic function with Hessian H(h) = 2(A −D), and that H(h) has
the same definiteness as

A−D =

−3 −1 −4
−1 −1 −2
−4 −2 −7


We compute the principal minors of A − D: We have D1 = −3, D2 = 3 − 1 = 2, and
that D3 = −3(7 − 4) + 1(7 − 8) − 4(2 − 4) = −2. We conclude that A − D, and therefore
H(h) = 2(A − D), is negative definite, and it follows that h is a concave function. By the
SOC, it follows that (x, y, z) = (3, 6,−3) is a maximizer in the Kuhn-Tucker problem, and
that fmax = f(3, 6,−3) = 27 is the maximum value.
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(e) We have that g(x, y, z) can be written as a sum of the quadratic forms 2x2+3z2+8xz and y2.
We see that the second one is positive definite, while the first is indefinite. This means that
D is not bounded, and therefore not compact. For example, we can let y = 0 and z = −x.
Then the constraint

g(x, y, z) = 2x2 + 3(−x)2 + 8x(−x) = 5x2 − 8x2 = −3x2 ≤ 9

is satisfied for all values of x, and this means that there in no upper or lower bound on x for
admissible points (x, y, z) in D.
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