Solutions Final exam in GRA 6035 Mathematics
Date April 29th, 2022 at 1300 - 1600

Question 1.

(a) We find an echelon form of A to determine its rank and determinant. We start by adding —1
times the last row to the first row so that the first pivot is 1:

2 -4 -1 1 0 -1 1 0 -1
-2 3 10 — -2 3 10 — 0o 3 8
1 -4 -10 1 -4 -10 0 -4 -9

Then we add the last row to the middle row so that the second pivot is —1:

1 0 -1 1 0 -1 10 -1
0 3 8 — 0 -1 -1 — 0 -1 -1
0 -4 -9 0 -4 -9 0 0 -5

We see that rk A = 3 since the matrix has three pivot positions, and the determinant is given

by det A =1-(—1)-(—5) = 5 since the elementary row operations we have used do not change

the determinant. Alternatively, we could compute the determinant using cofactor expansion.
(b) We solve the linear system (A — I)x = 0 to find a base of the nullspace:

1 -4 -11 1 -4 -11
A-TI=|-2 2 10 — 0 —6 —12
1 -4 -11 0 0 0
We see that z is a free variable (with x, y basic), hence dim Null(A—1T) = 1. We solve the linear
system using back substitution, and find y = —2z and « = 3z. The solutions are therefore
given by
T 3z 3
x=|y|l=|-2z]|=2[-2
z z 1
It follows that the vector vi = (3,—2, 1) forms a base of Null(A — I) = Ej.
(c) The eigenvalues of A are the solutions of the characteristic equation |[A — AI| = 0, and we
compute the determinant on the left-hand side by cofactor expansion along the first column:
2—-X -4 —11
A= X|=| -2 33—\ 10
1 -4 —=10—X

=(2=X) - [(3=A)(=10 — A) 4+ 40] + 2(—4(—=10 — \) — 44) + 1(—40 +11(3 — )
=2-MNAN+TA4+10) =32 =15= (2= NA+2)(A+5) —3(A+5)
=(A+5)4—-X=3)=(A+5)(1-r})=0

The solutions are therefore given by A+5 =10, or A = —5, or 1 — A2 =0, or A = +1. Hence the
eigenvalues of A are A = 1, —1, —5. Alternatively, we could have checked that the determinant
|A—A| =0 for A =—1,-5, and refer to b) for A = 1.

(d) Since there are three distinct eigenvalues of A, A is diagonalizable, and the eigenspaces E_;

and E_s5 are one-dimensional. We find a base vector in each case: For A = —1, an echelon
form of A 4 I is given by

3 —4 -11 1 0 -1 1 0 -1 1 0 -1

-2 4 10 — -2 4 10 — 0 4 8 — 0 4 8

1 -4 -9 1 -4 -9 0 —4 -8 0 0 0

and for A\ = —5, an echelon form of A + 51 is given by

7T -4 -11 1 20 19 1 20 19 1 20 19

-2 8 10 — -2 8 10 — 0 48 48 — 0 48 48

1 -4 -5 1 -4 =5 0 —24 -24 0 0 0
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Hence vo = (1,—2,1) and v3 = (1,1, 1) are base vectors of E_; and E_5. We may therefore
choose the matrix P with the bases of the eigenspaces as columns:

31 1
P=[(-2 -2 -1
1 1 1

We know from theory that this matrix satisfies P"'AP = D, where D is the diagonal matrix
with the eigenvalues 1, —1, —5 on the diagonal.

Question 2.

(a)

We use superposition to solve the linear second order differential equation y” — 3y’ +
2y = 6e~': To find the homogeneous solution yj,, we consider the characteristic equation
r? — 3r 4+ 2 = 0, with two distinct roots = 1 and r = 2, and therefore

yn = Cre + Cye
To find a particular solution y,, we consider the differential equation y” — 3y’ + 2y = 6e™".
We try to find a solution of the form y = Ae~!, which gives y/ = —Ae™! and 3"’ = Ae™ L.

When we substitute this into the differential equation, we get (A + 3A + 2A4)e™! = 6e™ !, or
6Ae~t = 6et. We see that A = 1 is a solution, and the general solution is therefore given by
y=yp+y,=Cre +Cre® +et
The differential equation ty’ +y = 1 can be written 3y’ + (1/t)y = 1/t, and is linear. Since
J1/tdt =Int + C, the integrating factor is u = et = ¢. Multiplication with the integrating
factor gives
i+ C

1
(t'y)/zit:l = t-y:/ldt:t+0 = y_T

The differential equation 2ty’ + y? = 1 can be written 2ty’ = 1 — 42, or ¢/ = (1 — y?)/(2t). It
is separable (but not linear), and we separate it and write it in the form

2, 1 2 1
= = dy= | —=Inlt|+C
v = /1_y2 y /t nt) +

To solve the integral on the left-hand side, we use partial fractions, and find constants A, B
such that
2 A B

0 0iis - 19 11y = 2=A0+9)+BU-y)=(A+B)+(A-DB)y

Comparing coefficients, we see that we need A + B = 2 and A — B = 0. This implies that
A=DBand 24 =2, or A = 1. This gives

2 1 1 1+y
dy= | —+-——dy=—In|l - In |1 C=1 C
/1—y2 y 1—y+1—|—y Y n|l—yl+In|l+yl+ n 1—y‘+
When we substitute this into the equation above, we get
1 1 1
lnﬂ:ln]tl—FC = ﬂ:\t\-ec ﬂ:Kt
1—y 1-— 1—y

where K = +¢®. Hence 1 +y = Kt(1 —y) = Kt — Kty, or y(1 + Kt) = Kt — 1. The general
solution on explicit form is therefore

_ Kt-1
YT Kt+1
The equilibrium state y, is the solutions of y’ = 0, or
2 -4 -11 -3 0 2 -4 -11 3
-2 3 10 |-y+|1 2 ]=1]60 = -2 3 10 | -y=1|-2
1 -4 -10 -1 0 1 -4 -10 1

We could solve this as a linear system using Gaussian elimination. But note that the coefficient

matrix equals the matrix A in Question 1, and the vector on the right-hand side equals one of

the eigenvectors vi in Fj that we found in Question 1b. This means that Av; =1-v; = vy,
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and therefore y. = vi = (3,—2,1). We found the eigenvalues of A in Question lc, and since
A =1 is a positive eigenvalue, we know that y. = (3, —2,1) is unstable.

Question 3.

(a)

We write f on matrix form f(x) = x’ Ax + Bx, where
-2 -1 —4
A=(-1 0 0|, B=(0 4 0)
-4 0 -3
To find the stationary points, we solve the first order conditions f'(x) = 24x + BT = 0, or
Ax = —1/2- BT, This gives a linear system, and we solve it using Gaussian elimination:
-2 -1 —-4] 0 -1 0 0]-=-2 -1 0 0]-2
-1 0 0|-2]—>[-2 -1 —-4| 0] — 0 -1 —4| 4
-4 0 =-3| O -4 0 =3 0 0 0 -3| 8

Back substitution gives —3z = 8 or z = —8/3, —y — 4(—8/3) = 4, or y = 20/3, and that
—x = —2or x = 2. Hence x* = (2,20/3, —8/3) is the unique stationary point f. To classify it,
notice that A is indefinite since Dy = —1. This means that H(f)(x*) = 24 is also indefinite,
and x* = (2,20/3,—8/3) is a saddle point for f by the second derivative test. Alternatively,
we could find the stationary point and classify it without using the matrix form of f.

The Lagrange problem has Lagrangian £ = x” Ax + Bx — A(x! Dx — 2), where D is the
symmetric matrix of the quadratic form g, given by

1 00
D=0 1 2
0 2 4

The first order conditions (FOC) can therefore be written £'(x) = 24x + BT — A\(2Dx) = 0,
and the constraint (C) can be written x Dx = 2. Together, the conditions FOC + C are the
Lagrange conditions of the problem:

FOC+C: 24x + BT — \(2Dx) =0, x'Dx =2

Alternatively, we could write down the Lagrange conditions without using matrix forms.
When ) = 1, the first order conditions are 24x + BT —2Dx =0, or (A — D)x = —1/2- BT.
This is a linear system, and we solve it using Gaussian elimination (where the first step is to
subtract the last row from the first to simplify computations):

-3 -1 -4 0 1 1 3 0 1 1 3 0 1 1 3 0
-1 -1 -2|-2}={-1 -1 -2|-2] =100 1|-2] =10 2 5 0
-4 -2 -7 0 -4 -2 -7 0 0 2 5 0 0 0 1|-2

Back substitution gives z = —2, 2y + 5(—2) = 0 or y = 5, and that z + 5+ 3(—2) = 0, or
x = 1. We get the solution (z,y, z; A) = (1,5, —2;1) of the FOC. We see that the constraint is
satisfied since

9(1,5,-2) = (1)* + 5> + 4(—2)> + 4(5)(—2) = 2
at this point. We conclude that there is one candidate point (x,y,z;\) = (1,5,—2;1) with
A = 1 that satisfies the Lagrange conditions. Alternatively, we could find the candidate points
without using matrix forms.
We use the second order condition (SOC) to test the candidate point (z,y, z; \) = (1,5,
and therefore consider the function

h(x) = L(x;1) = 24x + BT —2Dx = 2(A — D)x + BT

We notice that h is a quadratic function with Hessian H(h) = 2(A — D), and that H(h) has
the same definiteness as

_2; 1)7

-3 -1 —4
A-D=|-1 -1 -2
-4 -2 -7
We compute the principal minors of A — D: We have D; = -3, Dy = 3 —1 = 2, and

that D3 = —3(7 — 4) + 1(7 — 8) — 4(2 — 4)
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—2. We conclude that A — D, and therefore



H(h) = 2(A — D), is negative definite, and it follows that h is a concave function. By the
SOC, it follows that (z,y,z) = (1,5,—2) is a maximizer in the Lagrange problem, and that
fmax = f(1,5,—2) = 12 is the maximum value. Alternatively, we could apply the SOC without
using matrix forms.
To find the linear change of variables, we find the eigenvalues and eigenvectors of the symmetric
matrix D of the quadratic form g, given by
100
D=0 1 2
0 2 4
The characteristic equation is given by (1 —\)(A\2 —5)) = 0, and the eigenvalues are therefore
A =1,0,5. Next, we find a base for each eigenspace, given by the vectors

1 0 0
V] = 0 , Vo = -2 , V3 = 1
0 1 2

respectively. We know that D is orthogonal diagonalizable since D is symmetric, and to find
an orthonormal set of base vectors in each case, we divide each vector by its length (since all
eigenspace have dimension one). This gives orthonormal bases

1 1 0 1 0

w1 = 0 y Wo = —= -2 5 W3 = —= 1

0 Va1 V5 \2

respectively. It follows that the orthogonal matrix P with these vectors as columns satsify

100
P'DP=10 0 0
005

and this means that g(x) = 2 can be written u? 4+ 5u3 = 2 when we use the linear change of
base given by

z 1 0 0 (5
x=Pu < |yl|l=10 —2/V5 1/V/5] [|u
z 0 1/v5 2/V5 u3

This means that the set of admissible points is an elliptical cylinder.



