Exam	Final exam in GRA 6035 Mathematics
Date	November 30th 2022 at $1400-1700$

You must give reasons for your answers.

Question 1.

We consider the matrix A and the vector \mathbf{v} given by

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & -1 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right)
$$

(a) (6p) Compute the rank of A.
(b) $(6 \mathbf{p})$ Find a base of the nullspace of A.
(c) (6p) Determine the eigenvalue λ such that \mathbf{v} is in the eigenspace E_{λ}.
(d) $\mathbf{(6 p)}$ Find a base of the space U of vectors that are orthogonal to all vectors in $\operatorname{Null}(A)$.

Question 2.

Let q be the quadratic form given by $q(x, y, z)=3 x^{2}+4 x y+2 x z+4 y^{2}+2 y z+z^{2}$, and let p be the function given by $p(x, y, z)=u \cdot e^{u}$ with $u=u(x, y, z)=1-q(x, y, z)$.
(a) (6p) Determine the definiteness of the quadratic form q.
(b) (6p) Solve the unconstrained problem $\max / \min p(x, y, z)$.

Consider the Lagrange problem $\max / \min f(x, y, z)=x+y+z$ when $q(x, y, z)=4$, where q is the quadratic form given above.
(c) $\mathbf{(6 p)}$ Assume that $\left(x^{*}, y^{*}, z^{*} ; \lambda^{*}\right)$ is an admissible point that satisfies the first order conditions. Determine which of the following statements are true, and give reasons for your answers:
(A) If $\lambda^{*}>0$, then $\left(x^{*}, y^{*}, z^{*}\right)$ is a minimum point
(B) If $\lambda^{*}>0$, then $\left(x^{*}, y^{*}, z^{*}\right)$ is a maximum point
(C) If $\lambda^{*}<0$, then $\left(x^{*}, y^{*}, z^{*}\right)$ is a minimum point
(D) If $\lambda^{*}<0$, then $\left(x^{*}, y^{*}, z^{*}\right)$ is a maximum point
(d) (6p) Solve the Lagrange problem.

Question 3.

(a) (6p) Solve the differential equation: $4 y^{\prime \prime}+4 y^{\prime}-3 y=8+8 t-3 t^{2}$
(b) ($\mathbf{6 p}$) Solve the system of difference equations: $u_{t+1}=0.7 u_{t}+0.8 v_{t}, v_{t+1}=0.4 u_{t}+0.3 v_{t}$
(c) $(\mathbf{6 p})$ Solve the initial value problem: $2 t y^{2}-4 y+\left(2 t^{2} y-4 t\right) y^{\prime}=0, y(1)=5$
(d) $\mathbf{(6 p)}$ Solve the differential equation: $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=6$

Hint: To find the homogeneous solution in (d), determine all values of r such that $y=t^{r}$ is a solution of the homogeneous differential equation.

