Exam Final exam in GRA 6035 Mathematics Date November 30th 2022 at 1400 - 1700

You must give reasons for your answers.

Question 1.

We consider the matrix A and the vector \mathbf{v} given by

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$$

- (a) (6p) Compute the rank of A.
- (b) (6p) Find a base of the nullspace of A.
- (c) (6p) Determine the eigenvalue λ such that **v** is in the eigenspace E_{λ} .
- (d) (6p) Find a base of the space U of vectors that are orthogonal to all vectors in Null(A).

Question 2.

Let q be the quadratic form given by $q(x, y, z) = 3x^2 + 4xy + 2xz + 4y^2 + 2yz + z^2$, and let p be the function given by $p(x, y, z) = u \cdot e^u$ with u = u(x, y, z) = 1 - q(x, y, z).

- (a) (6p) Determine the definiteness of the quadratic form q.
- (b) (6p) Solve the unconstrained problem $\max / \min p(x, y, z)$.

Consider the Lagrange problem $\max / \min f(x, y, z) = x + y + z$ when q(x, y, z) = 4, where q is the quadratic form given above.

- (c) (6p) Assume that $(x^*, y^*, z^*; \lambda^*)$ is an admissible point that satisfies the first order conditions. Determine which of the following statements are true, and give reasons for your answers:
 - (A) If $\lambda^* > 0$, then (x^*, y^*, z^*) is a minimum point
 - (B) If $\lambda^* > 0$, then (x^*, y^*, z^*) is a maximum point
 - (C) If $\lambda^* < 0$, then (x^*, y^*, z^*) is a minimum point
 - (D) If $\lambda^* < 0$, then (x^*, y^*, z^*) is a maximum point
- (d) (6p) Solve the Lagrange problem.

Question 3.

- (a) (6p) Solve the differential equation: $4y'' + 4y' 3y = 8 + 8t 3t^2$
- (b) (6p) Solve the system of difference equations: $u_{t+1} = 0.7u_t + 0.8v_t$, $v_{t+1} = 0.4u_t + 0.3v_t$
- (c) (6p) Solve the initial value problem: $2ty^2 4y + (2t^2y 4t)y' = 0$, y(1) = 5
- (d) (6p) Solve the differential equation: $t^2y'' + 4ty' + 2y = 6$

Hint: To find the homogeneous solution in (d), determine all values of r such that $y = t^r$ is a solution of the homogeneous differential equation.