Question 1.

(a) The difference equation $y_{t+2}-y_{t+1}-2 y_{t}=0$ is a linear difference equation that is homogeneous, and it has characteristic equation $r^{2}-r-2=0$. The characteristic roots are $r_{1}=2$ and $r_{2}=-1$, hence the general solution is

$$
y_{t}=C_{1} \cdot 2^{t}+C_{2} \cdot(-1)^{t}
$$

(b) Since $A>0$, the Markov chain is regular, and we compute the eigenvectors of A with eigenvalue $\lambda=1$:

$$
A-I=\left(\begin{array}{cc}
-0.06 & 0.14 \\
0.06 & -0.14
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cc}
-0.06 & 0.14 \\
0 & 0
\end{array}\right)
$$

Hence y is free, and $-0.06 x+0.14 y=0$, or $x=0.14 y / 0.06=14 y / 6=7 y / 3$, and the eigenvectors in E_{1} are given by $\mathbf{w}=(x, y)=(7 y / 3, y)=y / 3 \cdot(7,3)$. The equilibrium state of the Markov chain is the unique eigenvector in E_{1} that is a state vector, and since $7+3=10$, it is given by

$$
\mathbf{v}=\frac{1}{10} \cdot\binom{7}{3}=\binom{7 / 10}{3 / 10}
$$

(c) We consider the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{v}_{4}$, and use Gaussian elimination to find out how many solutions there are:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 3 & 1 \\
2 & 3 & 7 & -4 \\
3 & 4 & 10 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 3 & 1 \\
0 & 1 & 1 & -6 \\
0 & 1 & 1 & -6
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 3 & 1 \\
0 & 1 & 1 & -6 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since there is one degree of freedom and infinitely many solutions, there are infinitely many ways to write \mathbf{v}_{4} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
(d) We can write the function $f(x, y, z)=x^{2}+2 y^{2}+5 z^{2}-4 x z+2 x-6 z+5$ in matrix form as $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}+B \mathbf{x}+5$, with

$$
A=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 5
\end{array}\right), \quad B=\left(\begin{array}{lll}
2 & 0 & -6
\end{array}\right)
$$

We see that A is positive definite since $D_{1}=1, D_{2}=2$, and $D_{3}=|A|=2(5-4)=2$. This means that f is convex and any stationary point is a minimum point. We find the stationary points using $f^{\prime}(\mathbf{x})=2 A \mathbf{x}+B^{T}=\mathbf{0}$, or $A \mathbf{x}=-1 / 2 \cdot B^{T}$, and solve for \mathbf{x} using Gaussian elimination:

$$
\left(\begin{array}{ccc|c}
1 & 0 & -2 & -1 \\
0 & 2 & 0 & 0 \\
-2 & 0 & 5 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -2 & -1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Back substitution gives $z=1,2 y=0$, or $y=0$, and $x-2(1)=-1$, or $x=1$. It follows that the minimum point of f is $(1,0,1)$, and the minimum value is

$$
f_{\min }=f(1,0,1)=3
$$

Question 2.

(a) We use Gaussian elimination to find the rank of A :

$$
A=\left(\begin{array}{ccc}
1 & 4 & 2 \\
2 & 1 & 5 \\
1 & 18 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 4 & 2 \\
0 & -7 & 1 \\
0 & 14 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 4 & 2 \\
0 & -7 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Since there are two pivot positions, we have that $\operatorname{rk}(A)=2$. Since there is no pivot in the third column, the determinant $\operatorname{det}(A)=0$.
(b) To find the null space of A, we solve the homogeneous linear system $A \mathbf{x}=\mathbf{0}$, and use the echelon form of A found above. We see that z is free, and back substitution gives $-7 y+z=0$, or $y=z / 7$, and $x+4(z / 7)+2 z=0$, or $x=-4 z / 7-2 z=-18 z / 7$. Hence the solutions are given by

$$
\mathbf{x}=\left(\begin{array}{c}
-18 z / 7 \\
z / 7 \\
z
\end{array}\right)=\frac{z}{7} \cdot\left(\begin{array}{c}
-18 \\
1 \\
7
\end{array}\right)
$$

It follows that $\mathbf{w}=(-18,1,7)$ is a base of $\operatorname{Null}(A)$.
(c) The characteristic equation of A is $-\lambda^{3}+\operatorname{tr}(A) \cdot \lambda^{2}-c_{2} \cdot \lambda+\operatorname{det}(A)=-\lambda^{3}+2 \lambda^{2}+99 \lambda=0$, since $\operatorname{tr}(A)=1+1+0=2, c_{2}=M_{12}+M_{23}+M_{13}=-7-90-2=-99$, and $\operatorname{det}(A)=0$ from (a). This gives that

$$
-\lambda^{3}+2 \lambda^{2}+99 \lambda=-\lambda\left(\lambda^{2}-2 \lambda-99\right)=-\lambda(\lambda-11)(\lambda+9)=0
$$

Therefore, the eigenvalue of A are $\lambda_{1}=0, \lambda_{2}=11$, and $\lambda_{3}=-9$.
(d) If \mathbf{v} is an eigenvector of A with eigenvalue λ, then we have

$$
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}
$$

Hence \mathbf{v} is also an eigenvector of A^{2} with eigenvalue λ^{2}. This proves that the eigenvalues of $B=A^{2}$ are $\lambda_{1}^{2}=0^{2}=0, \lambda_{2}^{2}=11^{2}=121$, and $\lambda_{3}^{2}=(-9)^{2}=81$. Since all three eigenvalues of B are distinct and therefore of multiplicity one, it follows that $\operatorname{dim} \operatorname{Null}(B)=1$.

Question 3.

(a) The function f is quadratic and can be written $f(\mathbf{x})=27+\mathbf{x}^{T} A \mathbf{x}$, where A is the symmetric matrix

$$
A=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -2 & 0 & 1 \\
1 & 0 & -2 & 0 \\
0 & 1 & 0 & -6
\end{array}\right)
$$

Its leading principal minors are $D_{1}=-1, D_{2}=2$, and $D_{3}=-2(2-1)=-2$ and $D_{4}=|A|$ is given by cofactor expansion along the last row:

$$
|A|=1 \cdot\left|\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -2 & 0
\end{array}\right|+(-6) D_{3}=1(-1)(2-1)-6(-2)=11
$$

It follows that A is negative definite, and therefore f is a concave function.
(b) We write the constraint as $\mathbf{x}^{T} D \mathbf{x}=10$, since the function in the constraint is also a quadratic form (we use D for its symmetric matrix since we have used A for the symmetric matrix in the function f), where

$$
D=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 / 2 \\
0 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 0 & 0
\end{array}\right)
$$

The Lagrangian function of the problem is $\mathcal{L}=27+\mathbf{x}^{T} A \mathbf{x}-\lambda\left(\mathbf{x}^{T} D \mathbf{x}-10\right)$, and the first order conditions are given by

$$
\mathcal{L}^{\prime}(\mathbf{x})=2 A \mathbf{x}-\lambda(2 D \mathbf{x})=\mathbf{0} \quad \Rightarrow \quad A \mathbf{x}-\lambda D \mathbf{x}=(A-\lambda D) \mathbf{x}=\mathbf{0}
$$

We find the solutions of the FOC's with $\lambda=-2$ by solving the linear system $(A+2 D) \mathbf{x}=\mathbf{0}$ using Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & 1 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 1 & 1 & -5
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 2 & -6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We see that w is free, $-z+3 w=0$, or $z=3 w, y-z+w=0$, or $y=2 w$, and $-x+z+w=0$, or $x=4 w$. The FOC's therefore give that $(x, y, z, w ; \lambda)=(4 w, 2 w, 3 w, w ;-2)$, and the constraint $x w+y z=10$ gives $(4 w) w+(2 w)(3 w)=10$, or $10 w^{2}=10$. It follows that $w^{2}=1$, or $w= \pm 1$, and we get two candidate points in the Lagrange problem with $\lambda=-2$:

$$
(x, y, z, w ; \lambda)=(4,2,3,1 ;-2),(-4,-2,-3,-1 ;-2)
$$

(c) We test the candidate points in (b) using the Second Order Condition (SOC): We consider $h(\mathbf{x})=\mathcal{L}(\mathbf{x} ;-2)=27+\mathbf{x}^{T}(A+2 D) \mathbf{x}$. Its Hessian is $H(h)=2(A+2 D)$, where $A+2 D$ is the coefficient matrix of the linear system in (b). We notice that $|A+2 D|=0$ since we found a free variable in (b). Moreover, the symmetric matrix

$$
A+2 D=\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -6
\end{array}\right)
$$

had leading principal minors $D_{1}=-1, D_{2}=2, D_{3}=-1(4-1)+1(0+2)=-1$, and $D_{4}=|A+2 D|=0$. Hence $A+2 D$ is negative semidefinite by the Reduced Rank Criterion (RRC), and h is therefore a concave function. It follows from the SOC that

$$
f_{\max }=f(4,2,3,1)=f(-4,-2,-3,-1)=27-16-8-18-6+24+4=7
$$

is the maximal value and that $\mathbf{x}=(4,2,3,1)(-4,-2,-3,-1)$ are maximum points in the Lagrange problem.
(d) The set $D=\{(x, y, z, w): x w+y z=10\}$ is not compact since it is closed but not bounded. For example, we can see this by considering the points ($x, 1,10,0$): These points are in D for any value of x since $x \cdot 0+1 \cdot 10=10$. This means that there is not a smallest or largest value of x among the points in D.

Question 4.

(a) The differential equation $y^{\prime}+4 t y=8 t$ is linear and can be solved using the integrating factor $u=e^{2 t^{2}}$ since $\int 4 t \mathrm{~d} t=2 t^{2}+C$. Multiplication with $u=e^{2 t^{2}}$ gives

$$
\left(e^{2 t^{2}} y\right)^{\prime}=8 t e^{2 t^{2}} \quad \Rightarrow \quad e^{2 t^{2}} y=\int 8 t e^{2 t^{2}} \mathrm{~d} t
$$

Using the substitution $v=2 t^{2}$ and $\mathrm{d} v=4 t \mathrm{~d} t$, we compute the integral on the right-hand side:

$$
\int 8 t e^{2 t^{2}} \mathrm{~d} t=\int 8 t e^{v} \frac{1}{4 t} \mathrm{~d} v=\int 2 e^{v} \mathrm{~d} v=2 e^{v}+C=2 e^{2 t^{2}}+C
$$

This gives the general solution

$$
e^{2 t^{2}} y=2 e^{2 t^{2}}+C \quad \Rightarrow \quad y=2+C e^{-2 t^{2}}
$$

Alternatively, we could write the differential equation as $y^{\prime}=8 t-4 t y=4 t \cdot(2-y)$ and solve it as a separable differential equation.
(b) We write the difference equation in the form $\left(y^{2}-2 t\right)+2 y t \cdot y^{\prime}=0$, and try to find a function $h=h(t, y)$ such that

$$
h_{t}^{\prime}=y^{2}-2 t, \quad h_{y}^{\prime}=2 y t
$$

We see that $h=y^{2} t-t^{2}+C(y)$ is the general solution of the first condition, and when we substitute this into the second condition, we find that $h_{y}^{\prime}=2 y t+C^{\prime}(y)$, and therefore $h_{y}^{\prime}=2 y t$ when $C^{\prime}(y)=0$. The simplest solution for h is therefore $h(t, y)=y^{2} t-t^{2}$ with $C(y)=0$. Since the differential equation is exact of the form $h_{t}^{\prime}+h_{y}^{\prime} \cdot y^{\prime}=0$, the general solution is given by

$$
h(t, y)=y^{2} t-t^{2}=C
$$

The initial condition $y(1)=2$ gives $2^{2} \cdot 1-1^{2}=C$, or $C=3$. Hence the particular solution is

$$
y^{2} t-t^{2}=3 \Rightarrow y^{2}=\frac{3+t^{2}}{t} \quad \Rightarrow \quad y=\sqrt{\frac{3+t^{2}}{t}}
$$

We have chosen the positive square root in order for the particular solution to satisfy $y(1)=2$.
(c) The characteristic equation of A is $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{cc}
2-\lambda & 0 \\
1 & -1-\lambda
\end{array}\right|=(2-\lambda)(-1-\lambda)=0
$$

and the two eigenvalues of A are therefore $\lambda_{1}=2$ and $\lambda_{2}=-1$. Since each eigenvalue has multiplicity one, there is a base \mathbf{v}_{i} for $E_{\lambda_{i}}$ which we can find using Gaussian elimination:

$$
E_{2}:\left(\begin{array}{cc}
0 & 0 \\
1 & -3
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right) \quad E_{-1}:\left(\begin{array}{ll}
3 & 0 \\
1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

We may choose the base vectors $\mathbf{v}_{1}=(3,1)$ and $\mathbf{v}_{2}=(0,1)$. We find the equilibrium state by solving $A \mathbf{y}+\mathbf{b}=\mathbf{0}$, which is a linear system $A \mathbf{y}=-\mathbf{b}$ that we can solve using Gaussian elimination:

$$
\left(\begin{array}{cc|c}
2 & 0 & 2 \\
1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & -1 & -1 \\
2 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 2 & 4
\end{array}\right)
$$

Back substitution gives $2 y=4$, or $y=2$, and $x-2=-1$, or $x=1$. The equilibrium state is therefore $(1,2)$, and the general solution of the system of linear differential equations is

$$
\mathbf{y}=\binom{1}{2}+C_{1}\binom{3}{1} \cdot e^{2 t}+C_{2}\binom{0}{1} \cdot e^{-t}
$$

(d) We can write the differential equation $y^{\prime}+t y^{2}=t$ as $y^{\prime}=t-t y^{2}=t \cdot\left(1-y^{2}\right)$ and solve it as a separable differential equation. This gives

$$
\frac{1}{1-y^{2}} y^{\prime}=t \quad \Rightarrow \quad \int \frac{1}{1-y^{2}} \mathrm{~d} y=\int t \mathrm{~d} t \quad \Rightarrow \quad \int \frac{2}{1-y^{2}} \mathrm{~d} y=\int 2 t \mathrm{~d} t
$$

We have multiplied the equation with 2 for convenience. To compute the integral on the left-hand side, we use partial fractions and the factorization $1-y^{2}=(1+y)(1-y)$:

$$
\frac{2}{1-y^{2}}=\frac{A}{1+y}+\frac{B}{1-y} \quad \Rightarrow \quad 2=A(1-y)+B(1+y)=(A+B)+(-A+B) y
$$

We have multiplied by the common denominator. We see that $A+B=2$ and $B-A=0$ by comparing coefficients, and this gives $A=B=1$. This gives

$$
\int \frac{1}{1+y} \mathrm{~d} y+\int \frac{1}{1-y} \mathrm{~d} y=\int 2 t \mathrm{~d} t \quad \Rightarrow \quad \ln |1+y|-\ln |1-y|=t^{2}+C
$$

and therefore we get

$$
\ln \frac{|1+y|}{|1-y|}=t^{2}+C \Rightarrow\left|\frac{1+y}{1-y}\right|=e^{t^{2}+C}=e^{t^{2}} e^{C} \quad \Rightarrow \quad \frac{1+y}{1-y}=\left(\pm e^{C}\right) e^{t^{2}}=K e^{t^{2}}
$$

We solve for y to get an explicit solution:

$$
1+y=(1-y) K e^{t^{2}} \quad \Rightarrow \quad y\left(1+K e^{t^{2}}\right)=K e^{t^{2}}-1 \quad \Rightarrow \quad y=\frac{K e^{t^{2}}-1}{K e^{t^{2}}+1}
$$

