
Solutions Final exam in GRA 6035 Mathematics
Date November 28th 2023 at 0900 - 1400

Question 1.

(a) The difference equation yt+2−yt+1−2yt = 0 is a linear difference equation that is homogeneous,
and it has characteristic equation r2 − r − 2 = 0. The characteristic roots are r1 = 2 and
r2 = −1, hence the general solution is

yt = C1 · 2t + C2 · (−1)t

(b) Since A > 0, the Markov chain is regular, and we compute the eigenvectors of A with eigenvalue
λ = 1:

A− I =

(
−0.06 0.14
0.06 −0.14

)
→

(
−0.06 0.14

0 0

)
Hence y is free, and −0.06x + 0.14y = 0, or x = 0.14y/0.06 = 14y/6 = 7y/3, and the
eigenvectors in E1 are given by w = (x, y) = (7y/3, y) = y/3 · (7, 3). The equilibrium state of
the Markov chain is the unique eigenvector in E1 that is a state vector, and since 7 + 3 = 10,
it is given by

v =
1

10
·
(
7
3

)
=

(
7/10
3/10

)
(c) We consider the vector equation x1v1 + x2v2 + x3v3 = v4, and use Gaussian elimination to

find out how many solutions there are:1 1 3 1
2 3 7 −4
3 4 10 −3

 →

1 1 3 1
0 1 1 −6
0 1 1 −6

 →

1 1 3 1
0 1 1 −6
0 0 0 0


Since there is one degree of freedom and infinitely many solutions, there are infinitely many
ways to write v4 as a linear combination of v1,v2,v3.

(d) We can write the function f(x, y, z) = x2 + 2y2 + 5z2 − 4xz + 2x − 6z + 5 in matrix form as
f(x) = xTAx+Bx+ 5, with

A =

 1 0 −2
0 2 0
−2 0 5

 , B =
(
2 0 −6

)
We see that A is positive definite since D1 = 1, D2 = 2, and D3 = |A| = 2(5 − 4) = 2. This
means that f is convex and any stationary point is a minimum point. We find the stationary
points using f ′(x) = 2Ax + BT = 0, or Ax = −1/2 · BT , and solve for x using Gaussian
elimination:  1 0 −2 −1

0 2 0 0
−2 0 5 3

 →

1 0 −2 −1
0 2 0 0
0 0 1 1


Back substitution gives z = 1, 2y = 0, or y = 0, and x− 2(1) = −1, or x = 1. It follows that
the minimum point of f is (1, 0, 1), and the minimum value is

fmin = f(1, 0, 1) = 3

Question 2.

(a) We use Gaussian elimination to find the rank of A:

A =

1 4 2
2 1 5
1 18 0

 →

1 4 2
0 −7 1
0 14 −2

 →

1 4 2
0 −7 1
0 0 0


Since there are two pivot positions, we have that rk(A) = 2. Since there is no pivot in the
third column, the determinant det(A) = 0.
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(b) To find the null space of A, we solve the homogeneous linear system Ax = 0, and use the
echelon form of A found above. We see that z is free, and back substitution gives −7y+z = 0,
or y = z/7, and x + 4(z/7) + 2z = 0, or x = −4z/7 − 2z = −18z/7. Hence the solutions are
given by

x =

−18z/7
z/7
z

 =
z

7
·

−18
1
7


It follows that w = (−18, 1, 7) is a base of Null(A).

(c) The characteristic equation of A is −λ3 + tr(A) · λ2 − c2 · λ+ det(A) = −λ3 + 2λ2 + 99λ = 0,
since tr(A) = 1 + 1 + 0 = 2, c2 = M12 +M23 +M13 = −7 − 90 − 2 = −99, and det(A) = 0
from (a). This gives that

−λ3 + 2λ2 + 99λ = −λ(λ2 − 2λ− 99) = −λ(λ− 11)(λ+ 9) = 0

Therefore, the eigenvalue of A are λ1 = 0, λ2 = 11, and λ3 = −9.
(d) If v is an eigenvector of A with eigenvalue λ, then we have

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v

Hence v is also an eigenvector of A2 with eigenvalue λ2. This proves that the eigenvalues of
B = A2 are λ2

1 = 02 = 0, λ2
2 = 112 = 121, and λ2

3 = (−9)2 = 81. Since all three eigenvalues of
B are distinct and therefore of multiplicity one, it follows that dimNull(B) = 1.

Question 3.

(a) The function f is quadratic and can be written f(x) = 27 + xTAx, where A is the symmetric
matrix

A =


−1 0 1 0
0 −2 0 1
1 0 −2 0
0 1 0 −6


Its leading principal minors are D1 = −1, D2 = 2, and D3 = −2(2− 1) = −2 and D4 = |A| is
given by cofactor expansion along the last row:

|A| = 1 ·

∣∣∣∣∣∣
−1 1 0
0 0 1
1 −2 0

∣∣∣∣∣∣+ (−6)D3 = 1(−1)(2− 1)− 6(−2) = 11

It follows that A is negative definite, and therefore f is a concave function.
(b) We write the constraint as xTDx = 10, since the function in the constraint is also a quadratic

form (we use D for its symmetric matrix since we have used A for the symmetric matrix in
the function f), where

D =


0 0 0 1/2
0 0 1/2 0
0 1/2 0 0

1/2 0 0 0


The Lagrangian function of the problem is L = 27+xTAx−λ(xTDx−10), and the first order
conditions are given by

L′(x) = 2Ax− λ(2Dx) = 0 ⇒ Ax− λDx = (A− λD)x = 0

We find the solutions of the FOC’s with λ = −2 by solving the linear system (A+ 2D)x = 0
using Gaussian elimination:

−1 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −6

 →


−1 0 1 1
0 −2 1 1
0 1 −1 1
0 1 1 −5

 →


−1 0 1 1
0 1 −1 1
0 −2 1 1
0 1 1 −5



→


−1 0 1 1
0 1 −1 1
0 0 −1 3
0 0 2 −6

 →


−1 0 1 1
0 1 −1 1
0 0 −1 3
0 0 0 0


2



We see that w is free, −z+3w = 0, or z = 3w, y−z+w = 0, or y = 2w, and −x+z+w = 0, or
x = 4w. The FOC’s therefore give that (x, y, z, w;λ) = (4w, 2w, 3w,w;−2), and the constraint
xw+ yz = 10 gives (4w)w+ (2w)(3w) = 10, or 10w2 = 10. It follows that w2 = 1, or w = ±1,
and we get two candidate points in the Lagrange problem with λ = −2:

(x, y, z, w;λ) = (4, 2, 3, 1;−2), (−4,−2,−3,−1;−2)

(c) We test the candidate points in (b) using the Second Order Condition (SOC): We consider
h(x) = L(x;−2) = 27+ xT (A+2D)x. Its Hessian is H(h) = 2(A+2D), where A+2D is the
coefficient matrix of the linear system in (b). We notice that |A + 2D| = 0 since we found a
free variable in (b). Moreover, the symmetric matrix

A+ 2D =


−1 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −6


had leading principal minors D1 = −1, D2 = 2, D3 = −1(4 − 1) + 1(0 + 2) = −1, and
D4 = |A + 2D| = 0. Hence A + 2D is negative semidefinite by the Reduced Rank Criterion
(RRC), and h is therefore a concave function. It follows from the SOC that

fmax = f(4, 2, 3, 1) = f(−4,−2,−3,−1) = 27− 16− 8− 18− 6 + 24 + 4 = 7

is the maximal value and that x = (4, 2, 3, 1) (−4,−2,−3,−1) are maximum points in the
Lagrange problem.

(d) The set D = {(x, y, z, w) : xw + yz = 10} is not compact since it is closed but not bounded.
For example, we can see this by considering the points (x, 1, 10, 0): These points are in D for
any value of x since x · 0+1 · 10 = 10. This means that there is not a smallest or largest value
of x among the points in D.

Question 4.

(a) The differential equation y′ + 4ty = 8t is linear and can be solved using the integrating factor

u = e2t
2
since

∫
4tdt = 2t2 + C. Multiplication with u = e2t

2
gives

(e2t
2
y)′ = 8te2t

2 ⇒ e2t
2
y =

∫
8te2t

2
dt

Using the substitution v = 2t2 and dv = 4t dt, we compute the integral on the right-hand side:∫
8te2t

2
dt =

∫
8tev

1

4t
dv =

∫
2ev dv = 2ev + C = 2e2t

2
+ C

This gives the general solution

e2t
2
y = 2e2t

2
+ C ⇒ y = 2 + Ce−2t2

Alternatively, we could write the differential equation as y′ = 8t− 4ty = 4t · (2− y) and solve
it as a separable differential equation.

(b) We write the difference equation in the form (y2− 2t)+ 2yt · y′ = 0, and try to find a function
h = h(t, y) such that

h′t = y2 − 2t, h′y = 2yt

We see that h = y2t − t2 + C(y) is the general solution of the first condition, and when we
substitute this into the second condition, we find that h′y = 2yt+C ′(y), and therefore h′y = 2yt

when C ′(y) = 0. The simplest solution for h is therefore h(t, y) = y2t − t2 with C(y) = 0.
Since the differential equation is exact of the form h′t+h′y ·y′ = 0, the general solution is given
by

h(t, y) = y2t− t2 = C

The initial condition y(1) = 2 gives 22 · 1− 12 = C, or C = 3. Hence the particular solution is

y2t− t2 = 3 ⇒ y2 =
3 + t2

t
⇒ y =

√
3 + t2

t

We have chosen the positive square root in order for the particular solution to satisfy y(1) = 2.
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(c) The characteristic equation of A is det(A− λI) = 0, which gives∣∣∣∣2− λ 0
1 −1− λ

∣∣∣∣ = (2− λ)(−1− λ) = 0

and the two eigenvalues of A are therefore λ1 = 2 and λ2 = −1. Since each eigenvalue has
multiplicity one, there is a base vi for Eλi

which we can find using Gaussian elimination:

E2 :

(
0 0
1 −3

)
→

(
1 −3
0 0

)
E−1 :

(
3 0
1 0

)
→

(
1 0
0 0

)
We may choose the base vectors v1 = (3, 1) and v2 = (0, 1). We find the equilibrium state
by solving Ay + b = 0, which is a linear system Ay = −b that we can solve using Gaussian
elimination: (

2 0 2
1 −1 −1

)
→

(
1 −1 −1
2 0 2

)
→

(
1 −1 −1
0 2 4

)
Back substitution gives 2y = 4, or y = 2, and x− 2 = −1, or x = 1. The equilibrium state is
therefore (1, 2), and the general solution of the system of linear differential equations is

y =

(
1
2

)
+ C1

(
3
1

)
· e2t + C2

(
0
1

)
· e−t

(d) We can write the differential equation y′ + ty2 = t as y′ = t− ty2 = t · (1− y2) and solve it as
a separable differential equation. This gives

1

1− y2
y′ = t ⇒

∫
1

1− y2
dy =

∫
tdt ⇒

∫
2

1− y2
dy =

∫
2tdt

We have multiplied the equation with 2 for convenience. To compute the integral on the
left-hand side, we use partial fractions and the factorization 1− y2 = (1 + y)(1− y):

2

1− y2
=

A

1 + y
+

B

1− y
⇒ 2 = A(1− y) +B(1 + y) = (A+B) + (−A+B)y

We have multiplied by the common denominator. We see that A+ B = 2 and B − A = 0 by
comparing coefficients, and this gives A = B = 1. This gives∫

1

1 + y
dy +

∫
1

1− y
dy =

∫
2tdt ⇒ ln |1 + y| − ln |1− y| = t2 + C

and therefore we get

ln
|1 + y|
|1− y|

= t2 + C ⇒
∣∣∣∣1 + y

1− y

∣∣∣∣ = et
2+C = et

2
eC ⇒ 1 + y

1− y
= (±eC)et

2
= Ket

2

We solve for y to get an explicit solution:

1 + y = (1− y)Ket
2 ⇒ y(1 +Ket

2
) = Ket

2 − 1 ⇒ y =
Ket

2 − 1

Ket2 + 1
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