You must give reasons for your answers.

Question 1.

(a) (3p) Find the general solution of the difference equation $y_{t+2}-y_{t+1}-2 y_{t}=0$.
(b) ($\mathbf{3 p}$) Find the equilibrium state of the Markov chain with transition matrix

$$
A=\left(\begin{array}{ll}
0.94 & 0.14 \\
0.06 & 0.86
\end{array}\right)
$$

(c) (3p) In how many ways is it possible to write \mathbf{v}_{4} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$?

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
3 \\
7 \\
10
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{c}
1 \\
-4 \\
-3
\end{array}\right)
$$

(d) (3p) Find the minimum value of $f(x, y, z)=x^{2}+2 y^{2}+5 z^{2}-4 x z+2 x-6 z+5$.

Question 2.

We consider the matrix A given by

$$
A=\left(\begin{array}{ccc}
1 & 4 & 2 \\
2 & 1 & 5 \\
1 & 18 & 0
\end{array}\right)
$$

(a) (6p) Compute the rank and the determinant of A.
(b) $(\mathbf{6 p})$ Find a base of the null space of A.
(c) $(6 \mathbf{p})$ Determine the characteristic equation and the eigenvalues of A.
(d) ($\mathbf{6 p}$) Find the eigenvalues of B and determine the dimension of $\operatorname{Null}(B)$ when $B=A^{2}$.

Question 3.

Let $f(x, y, z, w)=27-x^{2}-2 y^{2}+2 x z-2 z^{2}+2 y w-6 w^{2}$ and consider the Lagrange problem

$$
\max f(x, y, z, w) \text { when } x w+y z=10
$$

(a) ($6 \mathbf{p}$) Determine whether the function f is concave.
(b) $(\mathbf{6 p})$ Find the candidate points $(x, y, z, w ; \lambda)$ in the Lagrange problem with $\lambda=-2$.
(c) ($6 \mathbf{p}$) Show that the Lagrange problem has a maximum, and find the maximum value.
(d) ($\mathbf{6} \mathbf{p})$ Determine whether the set $\{(x, y, z, w): x w+y z=10\}$ of admissible points is compact.

Question 4.

(a) $(6 \mathbf{p})$ Find the general solution of the differential equation $y^{\prime}+4 t y=8 t$.
(b) $(\mathbf{6 p})$ Find the particular solution of the differential equation that satisfy the initial condition:

$$
y^{2}-2 t+2 y t \cdot y^{\prime}=0, \quad y(1)=2
$$

(c) ($\mathbf{6 p}$) Find the general solution of the system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}$ of differential equations, where

$$
A=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right), \quad \mathbf{b}=\binom{-2}{1}
$$

(d) $(\mathbf{6} \mathbf{p})$ Solve the differential equation $y^{\prime}+t y^{2}=t$.

