Solutions	Final exam in GRA 6035 Mathematics
Date	January 10th 2024 at $0900-1400$

Question 1.

(a) The second order differential equation $y^{\prime \prime}-2 y^{\prime}=0$ is homogeneous, and it has characteristic equation $r^{2}-2 r=r(r-2)=0$ with characteristic roots $r_{1}=0$ and $r_{2}=2$. The general solution is

$$
y=C_{1} \cdot e^{0 \cdot t}+C_{2} \cdot e^{2 t}=C_{1}+C_{2} \cdot e^{2 t}
$$

(b) We form the matrix $A=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3}\right)$, and find the pivot positions:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 3 \\
3 & 8 & 5 \\
1 & 3 & 4
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 2 & 2 \\
0 & 1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Since there are pivots positions in all three columns, the three vectors are linearly independent.
(c) The first order derivatives of f and the first order conditions are given by

$$
f_{x}^{\prime}=-3 x^{2}+3 y+3 z=0, \quad f_{y}^{\prime}=3 x-3 y^{2}+3 z=0, \quad f_{z}^{\prime}=3 x+3 y-3 z^{2}=0
$$

Since $3\left(-2^{2}+2+2\right)=0$, we see that $(2,2,2)$ is a stationary point of f. The Hessian matrix of f at this point is given by

$$
H(f)=\left(\begin{array}{ccc}
-6 x & 3 & 3 \\
3 & -6 y & 3 \\
3 & 3 & -6 z
\end{array}\right) \quad \Rightarrow \quad H(f)(2,2,2)=\left(\begin{array}{ccc}
-12 & 3 & 3 \\
3 & -12 & 3 \\
3 & 3 & -12
\end{array}\right)
$$

Since $D_{1}=-12, D_{2}=144-9=135$, and $D_{3}=3(9+36)-3(-36-9)-12(135)=-1350$, it follows that $H(f)(2,2,2)$ is negative definite. By the second derivative test, it follows that $(2,2,2)$ is a local maximum point of f.
(d) Since A is a symmetric matrix with $\operatorname{tr}(A)=4$ and $\operatorname{det}(A)=1(-4-4)-1(4-2)+1(2+1)=-7$, it has three eigenvalues with sum equal to 4 and product equal to -7 . The equilibrium states are given by $A \mathbf{y}+\mathbf{b}=\mathbf{0}$, or $A \mathbf{y}=-\mathbf{b}$. Since $|A| \neq 0$, there is a unique stable equilibrium state $\mathbf{y}_{e}=A^{-1}(-\mathbf{b})$. We know that it is stable if and only if A has three negative eigenvalues. This is not the case since the sum of the eigenvalues is $\operatorname{tr}(A)=4$. The system of differential equations therefore has no stable equilibrium state.

Question 2.

(a) We compute the determinant of A using cofactor expansion along the last row:

$$
|A|=\left|\begin{array}{ccc}
2 & 7 & 3 \\
3 & 11 & 5 \\
1 & -4 & 0
\end{array}\right|=1(35-33)+4(10-9)=2+4=6
$$

Since A is a 3×3 matrix with $|A| \neq 0$, we have that $\operatorname{rk}(A)=3$.
(b) We can write the equation $A \mathrm{x}=\mathrm{x}$ as $A \mathrm{x}-\mathrm{x}=A \mathrm{x}-I \mathrm{x}=(A-I) \mathrm{x}=\mathbf{0}$. To solve this homogeneous linear system, we use Gaussian elimination to find an echelon form of $A-I$:

$$
\left(\begin{array}{ccc}
2-1 & 7 & 3 \\
3 & 11-1 & 5 \\
1 & -4 & 0-1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 7 & 3 \\
3 & 10 & 5 \\
1 & -4 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 7 & 3 \\
0 & -11 & -4 \\
0 & -11 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 7 & 3 \\
0 & -11 & -4 \\
0 & 0 & 0
\end{array}\right)
$$

We see that z is a free variable, and back substitution gives that $-11 y-4 z=0$, or $y=-4 z / 11$, and that $x+7 y+3 z=x+7(-4 z / 11)+3 z=0$, or $x=28 z / 11-33 z / 11=-5 z / 11$. The solutions of the linear system can therefore be written

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-5 z / 11 \\
-4 z / 11 \\
z
\end{array}\right)=\frac{z}{11} \cdot\left(\begin{array}{l}
-5 \\
-4 \\
11
\end{array}\right)=\frac{z}{11} \cdot \mathbf{w} \text { with } \mathbf{w}=\left(\begin{array}{c}
-5 \\
-4 \\
11
\end{array}\right)
$$

There are infinitely many solutions (one degree of freedom) since the set of solutions can be written as $\operatorname{span}(\mathbf{w})$ with $\mathbf{w}=(-5,-4,11)$.
(c) The characteristic equation of A is $-\lambda^{3}+\operatorname{tr}(A) \cdot \lambda^{2}-c_{2} \cdot \lambda+\operatorname{det}(A)=-\lambda^{3}+13 \lambda^{2}-18 \lambda+6=0$, since $\operatorname{tr}(A)=2+11+0=13, c_{2}=M_{12}+M_{23}+M_{13}=1+20-3=18$, and $\operatorname{det}(A)=6$ from (a). We know that $\lambda=1$ is a solution since $A \mathbf{x}=1 \cdot \mathbf{x}$ has non-trivial solutions from (b). Alternatively, we can see this directly by substituting $\lambda=1$ into the characteristic equation. This gives that

$$
-\lambda^{3}+13 \lambda^{2}-18 \lambda+6=(\lambda-1) \cdot p(\lambda)=(\lambda-1)\left(-\lambda^{2}+12 \lambda-6\right)=0
$$

where we have found the second factor $p(\lambda)$ using polynomial division:

$$
\left(-\lambda^{3}+13 \lambda^{2}-18 \lambda+6\right):(\lambda-1)=-\lambda^{2}+12 \lambda-6
$$

The equation $-\lambda^{2}+12 \lambda-6=0$ can be written as $\lambda^{2}-12 \lambda+6=0$, and we solve it using the quadratic formula:

$$
\lambda=\frac{12 \pm \sqrt{12^{2}-4(6)}}{2}=6 \pm \frac{1}{2} \sqrt{120}=6 \pm \sqrt{30}
$$

Since A has three distinct eigenvalues $\lambda=1$ and $\lambda=6 \pm \sqrt{30}$, it follows that A is diagonalizable.

Question 3.

(a) The difference equation $y_{t+2}+y_{t+1}-6 y_{t}=3-4 t$ is second order linear and can be solved using the superposition principle. To find the homogeneous solution y_{t}^{h}, we consider the characteristic equation $r^{2}+r-6=0$. Using the quadratic formula, we find that it has roots $r=2$ and $r=-3$, and $y_{t}^{h}=C_{1} \cdot 2^{t}+C_{2} \cdot(-3)^{t}$. To find a particular solution, we consider $y_{t}=A t+B$, which gives $y_{t+1}=A(t+1)+B=A t+A+B$ and $y_{t+2}=A(t+2)+B=A t+2 A+B$. When we substitute this into the difference equation, we get

$$
(A t+2 A+B)+(A t+A+B)-6(A t+B)=3-4 t \Rightarrow(-4 A) t+(3 A-4 B)=-4 t+3
$$

Comparing coefficients, we find that $A=1$ and $3-4 B=3$, or $B=0$. This gives $y_{t}^{p}=t$, and the general solution is

$$
y_{t}=C_{1} \cdot 2^{t}+C_{2} \cdot(-3)^{t}+t
$$

(b) The differential equation $t+y^{\prime}=y$ can be written $y^{\prime}-y=-t$, and it is therefore linear. It can be solved using the superposition principle since $a(t)=-1$ is a constant: Since the characteristic equation $r-1=0$ has root $r=1$, the homogeneous solution is $y_{h}=C \cdot e^{t}$. To find a particular solution, we consider $y=A t+B$, which gives $y^{\prime}=A$. When we substitute this into the differential equation, we get

$$
A-(A t+B)=-t \Rightarrow(-A) t+(A-B)=-t
$$

Comparing coefficients, we find that $A=1$ and $1-B=0$, or $B=1$. This gives $y_{p}=t+1$, and the general solution is

$$
y=C e^{t}+t+1
$$

Alternatively, we could have used integrating factor to solve the differential equation.
(c) The characteristic equation of A is $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{cc}
2-\lambda & 0 \\
1 & -1-\lambda
\end{array}\right|=(2-\lambda)(-1-\lambda)=0
$$

and the two eigenvalues of A are therefore $\lambda_{1}=2$ and $\lambda_{2}=-1$. Since each eigenvalue has multiplicity one, there is a base \mathbf{v}_{i} for $E_{\lambda_{i}}$ which we can find using Gaussian elimination:

$$
E_{2}:\left(\begin{array}{cc}
0 & 0 \\
1 & -3
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right) \quad E_{-1}:\left(\begin{array}{ll}
3 & 0 \\
1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

We may choose the base vectors $\mathbf{v}_{1}=(3,1)$ and $\mathbf{v}_{2}=(0,1)$. We find the equilibrium state by solving $A \mathbf{y}_{t}+\mathbf{b}=\mathbf{y}_{t}$, since the equilibrium states are the constant solutions, with $\mathbf{y}_{t}=\mathbf{y}_{t+1}$. This gives $A \mathbf{y}_{e}-\mathbf{y}_{e}=-\mathbf{b}$, or $(A-I) \mathbf{y}_{e}=-\mathbf{b}$. We solve this linear system using Gaussian elimination:

$$
\left(\begin{array}{cc|c}
2-1 & 0 & 2 \\
1 & -1-1 & -1
\end{array}\right)=\left(\begin{array}{cc|c}
1 & 0 & 2 \\
1 & -2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 0 & 2 \\
0 & -2 & -3
\end{array}\right)
$$

Back substitution gives $-2 y=-3$, or $y=3 / 2$, and $x=2$. The equilibrium state is therefore $(2,3 / 2)$, and the general solution of the system of linear differential equations is

$$
\mathbf{y}_{t}=\binom{2}{3 / 2}+C_{1}\binom{3}{1} \cdot 2^{t}+C_{2}\binom{0}{1} \cdot(-1)^{t}
$$

(d) The differential equation $(t-3 y)+(8 y-3 t) \cdot y^{\prime}=0$ is exact if there is a function $h=h(t, y)$ such that

$$
h_{t}^{\prime}=t-3 y, \quad h_{y}^{\prime}=8 y-3 t
$$

We see that $h=t^{2} / 2-3 y t+C(y)$ is the general solution of the first condition, and when we substitute this into the second condition, we find that $h_{y}^{\prime}=-3 t+C^{\prime}(y)$, and therefore $h_{y}^{\prime}=8 y-3 t$ when $C^{\prime}(y)=8 y$. We choose the simplest solution is $C(y)=4 y^{2}$, which gives $h(t, y)=t^{2} / 2-3 y t+4 y^{2}$. Since the differential equation is exact of the form $h_{t}^{\prime}+h_{y}^{\prime} \cdot y^{\prime}=0$, the general solution is given by

$$
h(t, y)=\frac{1}{2} t^{2}-3 y t+4 y^{2}=C \quad \Rightarrow \quad t^{2}-6 y t+8 y^{2}=2 C=K
$$

The initial condition $y(1)=0$ gives $(1)^{2}-6(0)(1)+8(0)^{2}=K$, or $K=1$. Hence the particular solution in implicit form is given by

$$
t^{2}-6 y t+8 y^{2}=1 \quad \Rightarrow \quad 8 y^{2}-6 t \cdot y+\left(t^{2}-1\right)=0
$$

We solve the last equation using the quadratic formula, which gives that

$$
y=\frac{6 t \pm \sqrt{36 t^{2}-4(8)\left(t^{2}-1\right)}}{2 \cdot 8}=\frac{6 t \pm \sqrt{4 t^{2}+32}}{16}=\frac{3 t \pm \sqrt{t^{2}+8}}{8}
$$

We see that the two solutions give $y(1)=6 / 8$ or $y(1)=0$, and therefore the particular solution that satisfies $y(1)=0$ is given by

$$
y=\frac{1}{8}\left(3 t-\sqrt{t^{2}+8}\right)
$$

Question 4.

(a) We write $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ and $g(\mathbf{x})=\mathbf{x}^{T} D \mathbf{x}$, where A and D are the symmetric matrices of the objective function f and the function $g(x, y, z, w)=x^{2}+2 y^{2}+2 z^{2}+6 w^{2}$ that defines the constraint, with

$$
A=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right), \quad D=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

The Lagrangian function of the problem is $\mathcal{L}=\mathbf{x}^{T} A \mathbf{x}-\lambda\left(\mathbf{x}^{T} D \mathbf{x}-48\right)$, and the first order conditions are given by

$$
\mathcal{L}^{\prime}(\mathbf{x})=2 A \mathbf{x}-\lambda(2 D \mathbf{x})=\mathbf{0} \quad \Rightarrow \quad A \mathbf{x}-\lambda D \mathbf{x}=(A-\lambda D) \mathbf{x}=\mathbf{0}
$$

We find the solutions of the FOC's with $\lambda=1$ by solving the linear system $(A-D) \mathbf{x}=\mathbf{0}$ using Gaussian elimination:

$$
\begin{aligned}
& A-D=\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & 1 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 1 & 1 & -5
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 2 & -6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We see that w is free, $-z+3 w=0$, or $z=3 w, y-z+w=0$, or $y=2 w$, and $-x+z+w=0$, or $x=4 w$. The FOC's therefore give that $(x, y, z, w ; \lambda)=(4 w, 2 w, 3 w, w ; 1)$, and the constraint
$x^{2}+2 y^{2}+2 z^{2}+6 w^{2}=48$ gives $16 w^{2}+8 w^{2}+18 w^{2}+6 w^{2}=48$, or $48 w^{2}=48$. It follows that $w^{2}=1$, or $w= \pm 1$, and we get two candidate points in the Lagrange problem with $\lambda=1$:

$$
(x, y, z, w ; \lambda)=(4,2,3,1 ; 1),(-4,-2,-3,-1 ; 1)
$$

(b) The function f is quadratic and can be written $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$, where

$$
A=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Its leading principal minors are $D_{1}=D_{2}=D_{3}=D_{4}=0$. Using principal minors, we find that A is indefinite since one of the principal 2-minors is negative:

$$
\Delta_{2}=\Delta_{2}^{23,23}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=-1
$$

(c) We test the candidate points in (a) using the Second Order Condition (SOC): We consider $h(\mathbf{x})=\mathcal{L}(\mathbf{x} ; 1)=\mathbf{x}^{T}(A-D) \mathbf{x}+48 \lambda$. Its Hessian is $H(h)=2(A-D)$, where $A-D$ is the coefficient matrix of the linear system in (a). We notice that $|A-D|=0$ since we found a free variable in (a). Moreover, the symmetric matrix

$$
A-D=\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -6
\end{array}\right)
$$

had leading principal minors $D_{1}=-1, D_{2}=2, D_{3}=-1(4-1)+1(0+2)=-1$, and $D_{4}=|A-D|=0$. Hence $A-D$ is negative semidefinite by the Reduced Rank Criterion (RRC), and h is therefore a concave function. It follows from the SOC that the maximal value is

$$
f_{\max }=f(4,2,3,1)=f(-4,-2,-3,-1)=2(12+4+6+2)=48
$$

and that $\mathbf{x}=(4,2,3,1)(-4,-2,-3,-1)$ are maximum points in the Lagrange problem.
(d) We consider the Lagrange problem with parameter a (where the case $a=2$ is solved above):

$$
\max f(x, y, z, w)=2 x z+2 x w+2 y z+2 y w \text { when } x^{2}+2 y^{2}+a z^{2}+6 w^{2}=48
$$

From (c) we know that $f^{*}(2)=48$, since the maximal value is $f_{\max }=48$ when $a=2$. We compute the marginal change in the maximal value $f^{*}(a)$ using the Envelope Theorem: The Lagrangian of the problem with parameter a is $\mathcal{L}=f(x, y, z, w)-\lambda\left(x^{2}+2 y^{2}+a z^{2}+6 w^{2}-48\right)$, and it follows that $\mathcal{L}_{a}^{\prime}=-\lambda z^{2}$. Hence the marginal change at $a=2$ is given by

$$
\frac{\mathrm{d} f^{*}(a)}{\mathrm{d} a}=\mathcal{L}_{a}^{\prime}\left(\mathrm{x}^{*}(a) ; \lambda^{*}(a)\right)=-\lambda^{*}(2) \cdot y^{*}(2)^{2}=(-1) \cdot(\pm 3)^{2}=-9
$$

This gives the following estimate of maximal value when $a=1$:

$$
f^{*}(1) \approx f^{*}(2)+\Delta a \cdot \frac{\mathrm{~d} f^{*}(a)}{\mathrm{d} a}=48+(-1) \cdot(-9)=57
$$

(e) We consider the FOC for any value of λ, given by $(A-\lambda D) \mathbf{x}=\mathbf{0}$. Since $\mathbf{x}=\mathbf{0}$ does not fit into the constraint, we must have $|A-\lambda D|=0$. By dividing the last rows with suitable constants, we get
$|A-\lambda D|=\left|\begin{array}{cccc}-\lambda & 0 & 1 & 1 \\ 0 & -2 \lambda & 1 & 1 \\ 1 & 1 & -2 \lambda & 0 \\ 1 & 1 & 0 & -6 \lambda\end{array}\right|=0 \Longleftrightarrow\left|\begin{array}{cccc}-\lambda & 0 & 1 & 1 \\ 0 & -\lambda & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & -\lambda & 0 \\ 1 / 6 & 1 / 6 & 0 & -\lambda\end{array}\right|=\frac{0}{2 \cdot 2 \cdot 6}=0$
where the last equation is the characteristic equation of a new matrix B with $\operatorname{tr}(B)=0$ and $\operatorname{rk}(B)=2$. Hence $\lambda=0$ is an eigenvalue of B of multiplicity $4-2=2$, and $\lambda=1$ is an eigenvalue of B by (a). The last eigenvalue λ_{4} is given by $1+0+0+\lambda_{4}=0$, or $\lambda_{4}=-1$. The
rest is very similar to (a) and (c) with $\lambda=-1$ instead of $\lambda=1$: Going back to the first order conditions $(A+D) \mathbf{x}=\mathbf{0}$ for $\lambda=-1$, we get

$$
\begin{aligned}
& A+D=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 1 & -1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 2 & 1 & 1 \\
0 & 1 & -1 & 5
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & -1 & 3 \\
0 & 0 & -2 & 6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence w is free, and back substitution gives $z=3 w, y=-2 w$, and $x=-4 w$. When we substitute these values into the constraint, we get $48 w^{2}=48$, which gives $w^{2}=1$, or $w= \pm 1$. The candidate points with $\lambda=-1$ are therefore given by

$$
(x, y, z, w ; \lambda)=(-4,-2,3,1 ;-1),(4,2,-3,-1 ;-1)
$$

and $f(-4,-2,3,1)=f(4,2,-3,-1)=2(-12-4-6-2)=-48$. We use the SOC to check that these are minimum points: We have that $h(\mathbf{x})=\mathcal{L}(\mathbf{x} ;-1)$ has Hessian $H(h)=2(A+D)$. Moreover,

$$
A+D=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 6
\end{array}\right)
$$

has leading principal minors $D_{1}=1, D_{2}=2, D_{3}=3-2=1$, and $D_{4}|A+D|=0$ since the linear system $(A+D) \mathbf{x}=\mathbf{0}$ has a free variable. This means that $A+D$ is positive semidefinite by the RRC, hence h is convex. By the SOC, it follows that the minimum value in the Lagrange problem is

$$
f_{\min }=f(-4,-2,3,1)=f(4,2,-3,-1)=-48
$$

Alternatively, we can argue that there is a minimum since the set of admissible points is compact, but it would be difficult to find the minimum value without finding the candidate points with $\lambda=-1$.

