Solutions Final exam in GRA 6035 Mathematics
Date January 10th 2024 at 0900 - 1400

Question 1.

(a) The second order differential equation y” — 2y’ = 0 is homogeneous, and it has characteristic
equation 72 — 2r = r(r — 2) = 0 with characteristic roots r; = 0 and 7o = 2. The general
solution is

y=0C1-e"'+Cy- ¥ =C1 + Oy - e

(b) We form the matrix A = (vy|va|vs), and find the pivot positions:

~—

1 21 1 21 1 21 1 21
A:253 _ 01 1 N 011 . 0 11
3 8 5 0 2 2 0 0O 0 0 2
1 3 4 01 3 0 0 2 0 00

Since there are pivots positions in all three columns, the three vectors are linearly independent.
(¢) The first order derivatives of f and the first order conditions are given by

fi=-3"+3y+32=0, f,=3z-3+32=0, [ =3w+3y—3>=0

Since 3(—22 + 2 +2) = 0, we see that (2,2,2) is a stationary point of f. The Hessian matrix
of f at this point is given by

—6x 3 3 12 3 3
Hf) = 3 -6y 3 = HfHE222=| 3 -12 3
3 3 -6z 3 3 —12
Since Dy = —12, Dy = 144 — 9 = 135, and D3 = 3(9 + 36) — 3(—36 — 9) — 12(135) = —1350,

it follows that H(f)(2,2,2) is negative definite. By the second derivative test, it follows that
(2,2,2) is a local maximum point of f.

(d) Since A is a symmetric matrix with tr(A) = 4 and det(A) = 1(—4—4)—1(4—2)+1(2+1) = -7,
it has three eigenvalues with sum equal to 4 and product equal to —7. The equilibrium states
are given by Ay +b = 0, or Ay = —b. Since |A| # 0, there is a unique stable equilibrium
state ye = A71(—b). We know that it is stable if and only if A has three negative eigenvalues.
This is not the case since the sum of the eigenvalues is tr(A) = 4. The system of differential
equations therefore has no stable equilibrium state.

Question 2.
(a) We compute the determinant of A using cofactor expansion along the last row:

2 7 3
Al=[3 11 5/=1(35—-133)+4(10-9)=2+4=6
1 -4 0

Since A is a 3 x 3 matrix with |A| # 0, we have that rk(A) = 3.
(b) We can write the equation Ax = x as Ax —x = Ax — Ix = (A — I)x = 0. To solve this
homogeneous linear system, we use Gaussian elimination to find an echelon form of A — I:

2-1 7 3 1 7 3 1 7 3 1 7 3
3 11-1 5) =13 10 5 - (0 -11 -4 —- [0 —-11 —4
1 -4 0-1 1 -4 -1 0 —-11 -4 0 0 0

We see that z is a free variable, and back substitution gives that —11y—4z = 0, or y = —4z/11,
and that  + 7y + 3z = x + 7(—42/11) + 32 = 0, or © = 28z/11 — 332/11 = —5z/11. The
solutions of the linear system can therefore be written

x —5z/11 . -5 . -5
y | =1 —-4z/11 =9 —4 :ﬁ~wwithw: —4
z z 11 11

There are infinitely many solutions (one degree of freedom) since the set of solutions can be
written as span(w) with w = (=5, —4, 11).
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The characteristic equation of A is —A3+4tr(A)-A\2—co-A+det(A) = —A3 + 1302 — 18\ +6 = 0,
since tr(A) =2+ 11+ 0 = 13, co = Mjs + Moz + M3 = 1+ 20 — 3 = 18, and det(A) = 6
from (a). We know that A = 1 is a solution since Ax = 1-x has non-trivial solutions from (b).
Alternatively, we can see this directly by substituting A = 1 into the characteristic equation.
This gives that
XA 18 +6=A—1)-pN) = A—=1)(=A24+ 121 —6) =0
where we have found the second factor p(A) using polynomial division:
(=X 1302 — 18X +6): (A —1) = =X+ 120 —6

The equation —\2 4 12\ — 6 = 0 can be written as A2 — 12\ + 6 = 0, and we solve it using the
quadratic formula:

12+ /122 — 4(6 1
A\ = 5 ():612\/120261@

Since A has three distinct eigenvalues A = 1 and A = 64+/30, it follows that A is diagonalizable.

Question 3.

(a)

(b)

The difference equation 419 + 441 — 6y = 3 — 4t is second order linear and can be solved
using the superposition principle. To find the homogeneous solution yf, we consider the
characteristic equation 72 + r — 6 = 0. Using the quadratic formula, we find that it has roots
r=2and r = -3, and y = C; - 2! + Cy - (—3)!. To find a particular solution, we consider
yr = At+B, which gives y,11 = A(t+1)+B = At+A+B and y;12 = A(t+2)+B = At+2A+B.
When we substitute this into the difference equation, we get

(At+2A+B)+ (At+ A+ B)—6(At+ B) =3—4t = (—4A)t+ (3A—4B) = —4t+3

Comparing coefficients, we find that A =1 and 3 — 4B = 3, or B = 0. This gives v} = ¢, and
the general solution is
y=C1 -2 +Co- (—=3) +1¢

The differential equation t + 3’ = y can be written 3y’ — y = —t, and it is therefore linear.
It can be solved using the superposition principle since a(t) = —1 is a constant: Since the
characteristic equation 7 — 1 = 0 has root r = 1, the homogeneous solution is y, = C - e'. To
find a particular solution, we consider y = At + B, which gives 3y = A. When we substitute
this into the differential equation, we get

A—(At+B)=—-t = (-A)t+(A—B)=—t
Comparing coefficients, we find that A =1 and 1 — B =0, or B = 1. This gives y, =t + 1,
and the general solution is
y=Ce +t+1
Alternatively, we could have used integrating factor to solve the differential equation.
The characteristic equation of A is det(A — AI) = 0, which gives
2-X 0 ‘

== =0

and the two eigenvalues of A are therefore A\; = 2 and Ay = —1. Since each eigenvalue has
multiplicity one, there is a base v; for £\, which we can find using Gaussian elimination:

(00 (0 ) e (-0

We may choose the base vectors vi = (3,1) and vo = (0,1). We find the equilibrium state by
solving Ay; + b = yy, since the equilibrium states are the constant solutions, with y; = y¢y1.
This gives Ay, —ye = —b, or (A — I)ye = —b. We solve this linear system using Gaussian
elimination:

2-1 0 2y (1 0 2 . 1 0 2
1 -1-1}-1) \1 —-2|-1 0 —-2| -3
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Back substitution gives —2y = —3, or y = 3/2, and = = 2. The equilibrium state is therefore
(2,3/2), and the general solution of the system of linear differential equations is

(5 e () 20 () o

(d) The differential equation (¢ — 3y) 4+ (8y — 3t) - v/ = 0 is exact if there is a function h = h(t,y)

such that
hy=t—3y, hy=8y—3t

We see that h = t2/2 — 3yt + C(y) is the general solution of the first condition, and when
we substitute this into the second condition, we find that h; = =3t + C'(y), and therefore
hi, = 8y — 3t when C’(y) = 8y. We choose the simplest solution is C(y) = 4y?, which gives
h(t,y) = t?/2 — 3yt + 4y%. Since the differential equation is exact of the form h} + hy -y =0,
the general solution is given by

h(t,y) = %tQ —3yt+42=C = —6yt+8P2=20=K
The initial condition y(1) = 0 gives (1) —6(0)(1) +8(0)? = K, or K = 1. Hence the particular
solution in implicit form is given by
2 —6yt+8y° =1 = 8P —6t-y+(t*—1)=0
We solve the last equation using the quadratic formula, which gives that
)= 6t + /3612 —4(8)(12 — 1)  6tE V42 +32  3tEVt2+38
2-8 16 8

We see that the two solutions give y(1) = 6/8 or y(1) = 0, and therefore the particular solution
that satisfies y(1) = 0 is given by

’y:

(375 —Ver 8)

o =

Question 4.

(a) We write f(x) = x” Ax and g(x) = x” Dx, where A and D are the symmetric matrices of
the objective function f and the function g(z,vy,z,w) = 22 + 2y? + 222 + 6w? that defines the
constraint, with

0 011 1000
0 011 02 00
A= 110 0f” D= 0020
1100 0 0 0 6

The Lagrangian function of the problem is £ = x” Ax — A\(x” Dx — 48), and the first order
conditions are given by

L'(x)=24x-A2Dx)=0 = Ax—-ADx=(A-AD)x=0

We find the solutions of the FOC’s with A = 1 by solving the linear system (A — D)x = 0
using Gaussian elimination:

1 0 1 1 1 0 1 1 1 0 1 1
0 -2 1 1 0 -2 1 1 0 1 -1 1
A=-D=117 1 5 o710 1 21 1| 7o -2 1 1
1 1 0 -6 0 1 1 -5 0 1 1 -5

10 1 1 10 1 1

0 1 -1 1 0 1 -1 1

0 0 -1 3 0 0 -1 3

0 0 2 —6 00 0 0

We see that w is free, —z+3w =0,0r z = 3w, y—z+w =0, or y = 2w, and —z+z+w = 0, or
x = 4w. The FOC’s therefore give that (z,y, z,w; \) = (4w, 2w, 3w, w; 1), and the constraint
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22 4 2y 4 222 + 6w? = 48 gives 16w? 4 8w? 4 18w? + 6w? = 48, or 48w? = 48. It follows that
w? =1, or w = %1, and we get two candidate points in the Lagrange problem with A = 1:

(HZ, Y, =, W; )‘) = (47 27 37 1a 1)7 (_47 _27 _37 _1a 1)

The function f is quadratic and can be written f(x) = x! Ax, where
0011
0011
A= 1100
1100

Its leading principal minors are D1 = Dy = D3 = Dy = 0. Using principal minors, we find
that A is indefinite since one of the principal 2-minors is negative:

01

Ay = AP = ‘1 0

-

We test the candidate points in (a) using the Second Order Condition (SOC): We consider
h(x) = L(x;1) = x'(A — D)x + 48\. Its Hessian is H(h) = 2(A — D), where A — D is the
coefficient matrix of the linear system in (a). We notice that |[A — D| = 0 since we found a
free variable in (a). Moreover, the symmetric matrix

-1 0 1 1
0 -2 1 1
A=D=11 1 2 ¢
1 1 0 —6
had leading principal minors Dy = —1, Dy = 2, D3 = —1(4 — 1) + 1(0 + 2) = —1, and

Dy = |A—D| = 0. Hence A — D is negative semidefinite by the Reduced Rank Criterion
(RRC), and h is therefore a concave function. It follows from the SOC that the maximal value
is

fmax = f(4>2731 1) = f(_47 _2> _37 _1) = 2(12 + 4 +6+ 2) =48
and that x = (4,2,3,1) (=4, —2, -3, —1) are maximum points in the Lagrange problem.
We consider the Lagrange problem with parameter a (where the case a = 2 is solved above):

max f(z,y, z,w) = 2xz + 22w + 2yz + 2yw when z? + 2% + az? + 6w? = 48

From (c) we know that f*(2) = 48, since the maximal value is fimax = 48 when a = 2. We
compute the marginal change in the maximal value f*(a) using the Envelope Theorem: The
Lagrangian of the problem with parameter a is £ = f(z,y, z, w) — A(2% +2y% + a2? + 6w? — 48),

and it follows that £/ = —\z2. Hence the marginal change at a = 2 is given by
L) _ £ (@)X (@) = N (@) 720 = (1) - (£8)° = -0
This gives the following estimate of maximal value when a = 1:
F) ~ £5(2) + Aa- df;éa) — 48+ (—1) - (—9) = 57

We consider the FOC for any value of A\, given by (A — AD)x = 0. Since x = 0 does not
fit into the constraint, we must have |[A — AD| = 0. By dividing the last rows with suitable
constants, we get

A 0 1 1 A 0 1 1
loo—2x 1 1| 0 -x 1/2 172 0
A=ADI=17 1 oy 0 [T = a2 Sy 0T 22670
1 1 0 -6X 1/6 1/6 0 -\

where the last equation is the characteristic equation of a new matrix B with tr(B) = 0 and

rk(B) = 2. Hence A = 0 is an eigenvalue of B of multiplicity 4 — 2 = 2, and A = 1 is an

eigenvalue of B by (a). The last eigenvalue \4 is given by 1+0+0+ Xy =0, or Ay = —1. The
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rest is very similar to (a) and (c) with A = —1 instead of A = 1: Going back to the first order
conditions (A + D)x =0 for A = —1, we get

1 0 1 1 1 0 1 1 1 0 1 1
0 2 1 1 02 1 1 o1 1 -1
ATD=11 1920 7 ]o1 1 —1| 7 lo2 1 1
1 1 0 6 01 -1 5 01 -1 5
1 0 1 1 1 0 1 1
N o1 1 -1 N o1 1 -1
00 -1 3 00 -1 3
00 —2 6 00 0 O
Hence w is free, and back substitution gives z = 3w, y = —2w, and z = —4w. When we

substitute these values into the constraint, we get 48w? = 48, which gives w? = 1, or w = +1.
The candidate points with A = —1 are therefore given by
(.’L‘, Y, z,W; )‘) = (_47 _2) 3, ]-a _1)5 (47 27 _37 _15 _1)

and f(—4,-2,3,1) = f(4,2,-3,-1) =2(—12 —4 — 6 — 2) = —48. We use the SOC to check
that these are minimum points: We have that h(x) = £(x; —1) has Hessian H(h) = 2(A+ D).
Moreover,

101 1
02 1 1
A+D=1, 1 5 |
1106

has leading principal minors D1 = 1, Dy = 2, D3 = 3 —2 = 1, and Dy4|A + D| = 0 since
the linear system (A + D)x = 0 has a free variable. This means that A + D is positive semi-
definite by the RRC, hence h is convex. By the SOC, it follows that the minimum value in
the Lagrange problem is

fmin = f(_47 _27 3> 1) = f(47 21 _37 _1) = —48

Alternatively, we can argue that there is a minimum since the set of admissible points is
compact, but it would be difficult to find the minimum value without finding the candidate
points with A = —1.



