Exam	Final exam in GRA 6035 Mathematics
Date	January 10th 2024 at $0900-1400$

You must give reasons for your answers.

Question 1.

(a) (3p) Find the general solution of the differential equation $y^{\prime \prime}-2 y^{\prime}=0$.
(b) (3p) Determine whether the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent:

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
5 \\
8 \\
3
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
3 \\
5 \\
4
\end{array}\right)
$$

(c) $\mathbf{(3 p}$) Show that $(2,2,2)$ is a stationary point of f and classify it as a local maximum point, local minimum point or saddle point of f when $f(x, y, z)=3 x y+3 x z+3 y z-x^{3}-y^{3}-z^{3}$.
(d) (3p) Determine whether the system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}$ of linear differential equations has a stable equilibrium state when

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 2 \\
1 & 2 & 4
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right)
$$

Question 2.

We consider the matrix A given by

$$
A=\left(\begin{array}{ccc}
2 & 7 & 3 \\
3 & 11 & 5 \\
1 & -4 & 0
\end{array}\right)
$$

(a) (6p) Compute the determinant and the rank of A.
(b) ($\mathbf{6 p}$) Solve the linear system $A \mathbf{x}=\mathbf{x}$. How many solutions are there?
(c) $(\mathbf{6 p})$ Find the characteristic equation of A, and determine whether A is diagonalizable.

Question 3.

(a) $\mathbf{(6 p})$ Find the general solution of the difference equation $y_{t+2}+y_{t+1}-6 y_{t}=3-4 t$.
(b) (6p) Find the general solution of the differential equation $t+y^{\prime}=y$.
(c) (6p) Find the general solution of the system $\mathbf{y}_{t+1}=A \mathbf{y}_{t}+\mathbf{b}$ of difference equations, where

$$
A=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right), \quad \mathbf{b}=\binom{-2}{1}
$$

(d) $(\mathbf{6 p})$ Find the particular solution of the differential equation that satisfy the initial condition:

$$
t-3 y+(8 y-3 t) \cdot y^{\prime}=0, \quad y(1)=0
$$

Question 4.

Let $f(x, y, z, w)=2 x z+2 x w+2 y z+2 y w$ and consider the Lagrange problem

$$
\max / \min f(x, y, z, w) \text { when } x^{2}+2 y^{2}+2 z^{2}+6 w^{2}=48
$$

(a) $(6 \mathbf{p})$ Find the candidate points $(x, y, z, w ; \lambda)$ in the Lagrange problem with $\lambda=1$.
(b) (6p) Find the symmetric matrix of the quadratic form f, and determine its definiteness.
(c) (6p) Show that the Lagrange problem has a maximum, and find the maximum value.
(d) $(\mathbf{6 p})$ Estimate the new maximum value if we change the constraint to $x^{2}+2 y^{2}+z^{2}+6 w^{2}=48$.
(e) (6p) Show that the (original) Lagrange problem has a minimum, and find the minimum value.

