

| Written examination:  | GRA 60353                                               | Mathematics |                                    |
|-----------------------|---------------------------------------------------------|-------------|------------------------------------|
| Examination date:     | Dec 2013                                                | 3h          | Total no. of pages: 2              |
| Permitted examination | A bilingual dictionary and BI-approved calculator TEXAS |             |                                    |
| support material:     | INSTRUMENTS BA II Plus                                  |             |                                    |
| Answer sheets:        | Squares                                                 |             |                                    |
|                       | Counts 80% of                                           | of GRA 6035 | The subquestions have equal weight |
| Mock exam             |                                                         |             | Responsible department: Economics  |

All subquestions have the same weight and give maximal score 6p each. Answers to the first 12 subquestions give a maximal score of 72p (100%). Question 4(d) can be skipped, but give 6p extra credit if answered correctly.

QUESTION 1.

Let f be the function given by  $f(x, y, z, w) = x^2 - y^2 + y^3 + yz + z^2 + w^2$ .

- (a) (6p) Compute the partial derivatives and the Hessian matrix of f.
- (b) (6p) Find all stationary points of f, and classify them as local max, local min or saddle points.
- (c) (6p) Is f convex? Is it concave?

We consider the matrix A given by

$$A = \begin{pmatrix} a & 1 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

- (a) (6p) Compute the determinant and rank of A.
- (b) (6p) Determine all values of a such that A is positive semidefinite.
- (c) (6p) Find all eigenvalues of A.

## QUESTION 3.

Solve the following differential equations:

(a) (6p)  $y'' - 7y' + 10y = 4e^t - 5$ (b) (6p)  $ty' + (2 - t)y = e^{2t}$  (when t > 0) (c) (6p)  $3y^2te^{-t}y' + (y^3 - 1)e^{-t} = te^{-t}y^3$  (when t > 0)

## QUESTION 4.

We consider the following Kuhn-Tucker problem:

min 
$$f(x, y, z, w) = x^2 + y^2 + z^2 + w^2$$
 subject to   
 $\begin{cases} xy + 1 \le 0 \\ 2zw + 8 \le 0 \end{cases}$ 

- (a) (6p) Write down the Kuhn-Tucker conditions. Show that there is a solution of these conditions with (x, y, z, w) = (1, -1, 2, -2), and find the corresponding multipliers.
- (b) (6p) Show that (x, y, z, w) = (1, -1, 2, -2) solves the Kuhn-Tucker problem.
- (c) (6p) Estimate the minimum value in the Kuhn-Tucker problem we obtain when we replace the second constraint with  $2zw + 7.9 \le 0$ .
- (d) Extra credits (6p) Find all solutions of the Kuhn-Tucker conditions in a).