```
Solutions Mock midterm exam in GRA 6035 Mathematics
Date October 12th, 2023 at 1700-1800
```


Question 1.

We have that $\operatorname{rk}(A)=2$ since the third row is the sum of the first two rows, and $M_{12,12}=3-2=1 \neq 0$.
Alternatively, we may use Gaussian elimination to find the rank:

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
2 & 3 & -1 & 3 \\
3 & 4 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & 1 & -3 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Question 2.

We can write \mathbf{v}_{4} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ in infinitely many ways, since the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{v}_{4}$ can be solved using the same elementary row operations as in Question 1 , which can be written

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & -1 \\
2 & 3 & -1 & 3 \\
3 & 4 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & -1 \\
0 & 1 & -3 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and we see from the pivot positions that there is one degree of freedom and infinitely many solutions for $\left(x_{1}, x_{2}, x_{3}\right)$.

Question 3.

The equilibrium state is $\mathbf{v}=(1 / 4,3 / 4)$ since the Markov chain is regular, and the eigenvector $(1,3)$ is a base of the eigenspace

$$
E_{1}=\operatorname{Null}\left(\begin{array}{cc}
-0.21 & 0.07 \\
0.21 & -0.07
\end{array}\right)=\operatorname{Null}\left(\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right) \quad \Rightarrow \quad\binom{x}{y}=\binom{y / 3}{y}=\frac{y}{3} \cdot\binom{1}{3}
$$

with $1 / 4 \cdot(1,3)=(1 / 4,3 / 4)$ as the unique state vector in E_{1}.

Question 4.

The quadratic form q is positive definite since its symmetric matrix A is given by

$$
A=\left(\begin{array}{ccc}
2 & 4 & 6 \\
4 & 9 & 13 \\
6 & 13 & 20
\end{array}\right)
$$

with $D_{1}=2>0, D_{2}=18-16=2>0, D_{3}=6(52-54)-13(26-24)+20(2)=2>0$.

Question 5.

The determinant is $\operatorname{det}(A)=0$ since the linear system has two distinct solutions, and therefore infinitely many solutions and at least one free variable.

Question 6.

We have that \mathbf{v} is in E_{4} and $\operatorname{dim} E_{4}=1$: We have that \mathbf{v} is an eigenvector with eigenvalue $\lambda=4$ since

$$
A \cdot \mathbf{v}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
4 \\
8 \\
4
\end{array}\right)=4 \mathbf{v}
$$

and $\operatorname{dim} E_{4}=\operatorname{dim} \operatorname{Null}(A-4 I)=3-\operatorname{rk}(A-4 I)=3-2=1$ since $A-4 I$ has two pivot positions:

$$
A-4 I=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

Question 7.

The minimum value is $f_{\text {min }}=5$: In fact, $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}+B \mathbf{x}+C$ with

$$
A=\left(\begin{array}{ccc}
1 & 1 / 2 & 0 \\
1 / 2 & 1 & 1 / 2 \\
0 & 1 / 2 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
-2 & -2 & -2
\end{array}\right), \quad C=7
$$

where A is positive definite since $D_{1}=1, D_{2}=1-1 / 4=3 / 4$, and $D_{3}=-1 / 2(1 / 2)+1(3 / 4)=1 / 2$ are positive. This means that f is convex with a single stationary point, given by

$$
2 A \mathbf{x}+B^{T}=\mathbf{0} \quad \Rightarrow \quad\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
$$

Since $(x, y, z)=(1,0,1)$ is a solution, $f_{\min }=f(1,0,1)=5$.

Question 8.

The matrix A is diagonalizable since it has three distinct eigenvalues: The characteristic equation

$$
\left|\begin{array}{ccc}
-\lambda & 1 & 5 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right|=0
$$

gives $-\lambda\left(\lambda^{2}-1\right)-1(-\lambda-1)+5(1+\lambda)=-\lambda(\lambda+1)(\lambda-1)+6(\lambda+1)=0$. This gives $\lambda=-1$ or $-\lambda^{2}+\lambda+6$. The eigenvalues of A are $\lambda=-1, \lambda=-2$, and $\lambda=3$.

